
IAD-A251 734 DTJC
fIB I I ~lE LE CTEF.br

UCMS 2 Revers Engneering &
ENCOREIMODEL Inf

Ippyq o ulcrlae
I si~tonU~~e

U
a

Statement A per telecon James Smith
ONR/Code 1267
Arlington, VA 22217-5000

NWW 6/9/92

Final Report:

CMS-2 Reverse Engineering &

ENCORE/MODEL Integration

Contract # N00014-91-C-0240

May 1992 -*'* e-

General Electric Company :" .. : c .. .

Corporate Research and Development -. Gr- : ~e

P. 0. Box 8 a :! .ca

'I Schenectady, NY 12301

This work was supported
in part by

1 Naval Surface Warfare Center (NSWCDD)

under contract #N00014-91-C-0240

I with the Office of Naval Research

I

92-14399

S92 6 01 0,68

I. Table of Contents
CMS2 Reverse Engineering and

NENCORE/MODEL Integration Study
Final Report

Part I CMS-2 Reverse Engineering Technology .. 1

Chapter 1.0 Technology Overview .. 1
Chapter 2.0 Automatic Operation, Installation, and Setup .. 5

2.! Automatic Operation .. 5
2.2 RET Installation ... 7
2.3 System Setup .. 7

Chapter 3.0 Information Extraction ... 8
"1 User Perspective .. 8
32 Internals ... 8

Chapter 4.0 Comment Processing .. 13
4.1 User Perspective .. 13
4.2 Internals ... 13

Chapter 5.0 System Integration ... 14
5.1 User Perspective .. 14
5.2 Internals ... 14

Chapter 6.0 Building the Teamwork/SD Reverse Engineering Database 15
6.1 User Perspective .. 15
62 Internals ... 15

Chapter 7.0 TeamW ork Environment .. 15
7.1 Invocation .. 15
7.2 Basic Teamwork Displays .. 15

7.3 GE-Supplied Extensions .. 16

Chapter 8.0 File Formats .. 17
8.1 Middle Files ... 17
8.2 Comment Files ... 19

Part II ENCORE-MODEL Integration Study 20

Appendix A: CMS RET User's Manual

Appendix B: Introduction to ENCORE Internal Representation

Appendix C: ADL Description of the Ada Internal Representation

Appendix D: Introduction to the ENCORE Symbol Table
Appendix E: Model/ESL Internal Representation

NOOD14-91 -C 40 F Repo may 1992 i

I

I[CMS2 Reverse Engineering and

ENCORE/MODEL Integration StudyI
,* Final Report

-" This is the final report for the contract N00014-91-C-0240. It is divided into two parts: one
addressing the CMS-2 Reverse Engineering Technology, and the other the ENCORE/
MODEL Integration Study.

Part I CMS-2 Reverse Engineering Technology

9 Part I presents an overview of the CMS-2 Reverse Engineering Technology (CMS RET)
produced for this contract. It includes a description of the operation of the tool, as well as
the work done, and the portions reused from other projects. Chapter 1.0 gives an overview
of the work done, Chapter 2.0 presents installation information and recommended opera-
tion instructions, Chapters 3.0 through 7.0 provide detailed discussions of the functional
areas involved, and Chapter 8.0 details the formats of two files which are crucial to anyone
customizing or extending CMS RET.

Chapter 1.0 Technology Overview

3 The work done for this contract demonstrates that:

* Automated extraction of design information from an existing software system written
in CMS-2 can be used to document that system as-built, and that

I The extracted information can be entered into the database of a commercially avail-
able CASE tool and manipulated via the CASE interface.

I The delivered prototype operates on Sun/4 workstations and interfaces to the Cadre Team-
work/SD1 and Cadre Teamwork/C Rev2 CASE tools. In addition, documentation is pro-
vided in chapter 8.0 which will allow the Database Generator to be reimplemented in
order to interface with other CASE tools which provide similar functionality to the Cadre
technology.

I
1. Teamwork/SD is a registered trademark of Cadre Technologies Inc.
2. Teamwork/C Rev is a trademark of Cadre Technologies Inc.a N00114-91 -C-0240 Final Report May 1992

The key features of the CMS RET system are:

*The interactive visual interface to the extracted information is provided by a commer-
dally available CASE tool.

* Information describing software system design is automatically extracted from source
files and organized in a language independent standard mode.

*A method has been developed which exploits project-specific commenting conven-
tions in order to automatically extract comments to the database.

There are three major vehicles of communication provided by the Teamwork/SD interface:

e Structure charts illustrate the calling relationships between modules. (see Figure 1)

- Module specifications (Mspecs) present a description of each module. (see Figure 2)

*Data dictionary entries (DDEs) describe the global variables. (see Figure 3)

In addition the system will answer the following questions:

e Where is this variable referenced?

*Which modules call this one?I
File llum

"
VB blm P DG WI D W OW

FIGURE 1. Structure Chart generated by CMS RET, displayed by Teamwork/lSD

N0014-91-C0240 FW Repwi ay I 9 2

I ft Woe14pc .t I T OW

TILEaM

nETA I -

SmTU -

tooTW

M-

eader file Text:
UUIC~d cceemnt:
3 .1.2 SE1W MMUNE UIMt PIEO 'NMWi
TIE OANSM IUK 1 TI OTO IT aTs TO ICIESILEIM

SITS WiMsm (EkMS FOR TME KIN KUESIS.

5 FIGURE 2. Mspec generated by CMS RET, displayed by Teamwork/SD

FIUE .Tw xapeso sW poue. yCS RE , aeSyTamok

The~~~ obetv o f .th M ees EgneigTcnooyi opoid h nomto

for the displays in Figures 1, 2, and 3. T achiev ths GE 11 b iuo w as rjcs

CM-2t Aa nsltr(M2da 1 n Joia Reverse EwngiernTcnlg

5RT [2GRE] . Two xampe fD~ prodie 2lnue cby lte whic RTodspa ld b eamw d, and

TheT ocived ofrahewr for R ea everse ngineering echnology isthpoideh nomadon

adapted to fit CMS-2.

The CMS-2 Reverse Engineering Technology is made up of four functional areas:V 1) Information Extraction, 2) Comment Processing, 3) Database Generation, and the 4)
Cadre Teamwork interface. The first two functions (Information Extraction and Comment
Processing) operate on a file-by-file basis, collecting relevant information into a language-
independent format. Database Generation builds a system-wide view of the information,
writing it into a form which Teamwork can process. The final functional area is Cadre
Teamwork/SD. These four functions work together to Visually present as-built architec-

tural information about an existing system. Figure 4 shows how these area fit together.

N00014-91 -C-0240 Fnal Report may 199 3

I The bulk of the work for this contract was done on the first two functional areas: Informa-
tion Extraction and Comment Processing. The Database Generator was reused from JRET
and Teamwork/SD is a commercial product from Cadre, which was extended somewhat
using their extensible interface. (These extensions were also reused from JRET.)

CMS-2

Source Files

I

1 (2) Comment Processor sac~ ah

.ext-corn files

(3) Database Generator

re~dret.script re~sret.dd

S(4) crev (Cde()twkput (Cadre)l

FIGURE 4. System Overview of CMS RET

N0001 4-91 -C.0240 RWns Repan may 1992

Chapter 2.0 Automatic Operation, Installation, and Setup

2.1 Automatic Operation

CMS RET is run as a series of steps. These steps are usually run across all Computer Soft-
ware Configuration Items I (CSCIs) in a CMS system when the initial build of the Teamwork
database is done. (See Section 2.3 for further details about CSCIs.) Over time, as files
change, there may be a need to rebuild the database. If only a small number of CSCIs have
been affected, it may be preferable to run rebuild only on the part of the database dealing
with the affected CSCI's.

The $RET_D HOMadmin/build-ret script will run all the steps, either for one CSCI or
for the whole CMS system. It takes care of all the details and housekeeping involved, and
produces log files so that the user can monitor its progress. It is invoked as follows:

$RETDB HOMEjadmin/build-ret [n [CSClname]

n - is an integer between 1 and 7 specifying which operation is to be performed. If it is not
entered on the command-line, build-ret prompts for an input. The choices are as follows:

1 CMS Rev pass 3 (information extraction)
2 CMS Rev Comment Processing
3 CMS Rev pass 4 (system integration, part 1)
4 Post-Process CMS Rev (system integration, part 2)S 5 Create TeamWork Database
6 Dump TeamWork Database
7 Restore TeamWork Database

CSCI_name- indicates the CSCI on which the specified operation should be performed. If
omitted, the processing will affect all CSCI's, as determined by the contents of $RET_DB_.-
HOME/src/search.paths.

In normal operation, one would call the script with option 1, then 2, and so on, until option
5 had been performed. A CSCI name is not generally specified unless a particular CSCI is
being rebuilt separately for some reason.

Here is the sequence of commands and system responses which would be issued to build a

full CMS system which contains the CSCIs COLLECT and ANALYZE:

> $RET DBHOME/admin/build-ret 1
Begin RET Build Program, Tue Apr 21 10:01:36 EDT 1992
ANALYZE CMS Rev Pass 3 Tue Apr 21 10:01:39 EDT 1992
COLLECT CMS Rev Pass3 Tue Apr 21 10:01:54 EDT 1992
End RET Build Program, Tue Apr 21 10:02:14 EDT 1992
> $RET DBHOMFJadmin/build-ret 2
Begin RET Build Program, Tue Apr 21 10:02:28 EDT 1992

1. See DOD-STD-2167A, June 4, 1985, for definitions relevant to Computer Software Organization.

N014-91.c.2A Fm Repo 199 2 5

A
I ANALYZE CMS Rev Comment Processing Tue Apr 21 10:02:31 EDT 1992

COLLECT CMS Rev Comment Processing Tue Apr 21 10:02:42 EDT 1992

End RET Build Program, Tue Apr 21 10:02:50 EDT 1992
> "$RETDBHOME/admin/build-ret 3
Begin RET Build Program, Tue Apr 21 10:03:03 EDT 1992
ANALYZE CMS Rev Pass 4a Tue Apr 21 10:03:05 EDT 1992
COLLECT CMS Rev Pass 4a Tue Apr 2110:03:08 EDT 1992

CMS Rev Pass 4b Tue Apr 21 10:03:12 EDT 1992
ANALYZE CMS Rev Pass 4c Tue Apr 21 10:03:15 EDT 1992
COLLECT CMS Rev Pass 4c Tue Apr 2110:03:23 EDT 1992
End RET Build Program, Tue Apr 2110:03:33 EDT 1992>SRET_DB_HOME/admin/build-ret 4
Begin RET Build Program, Tue Apr 21 10:03:49 EDT 1992
ANALYZE CMS Rev Post-rocessing Tue Apr 2110:03:51 EDT 1992
COLLECT CMS Rev Post-Processing Tue Apr 2110:03:55 EDT 1992

End RET Build Program, Tue Apr 21 10:03:59 EDT 1992
> $RET DB HOME/admin/build-ret 5
Begin RET Build Program, Tue Apr 21 10:04:16 EDT 1992

*** Starting crev and twkput *** Tue Apr 21 10:04:18 EDT 1992
yes to proceed, CTRL1C to abort: yes
crev and twk-put pass for ANALYZE Tue Apr 21 10:04:21 EDT 1992
crev and twk-put pass for COLLECT Tue Apr 21 10:06:12 EDT 1992

*** Completed crev and twkput *** Tue Apr 21 10:10:46 EDT 1992
End RET Build Program, Tue Apr 21 10:10:47 EDT 1992

If the system had been built once already but changes had occurred only in ANALYZE, the
user could rebuild only that CSCI by issuing the same set of commands, but with ANA-
LYZE appended to each.

5Options 6 and 7 are not a normal part of building the system. They are useful for backups
and for transporting the database between systems. They simply invoke the appropriate
Cadre utilities. When option 6 is invoked without a CSCI name, the dump is placed into
$RET_DB_HOME/dump/twk-dump. If a CSCI name is specified, then the dump goes into
$RETDBHOME/dump/csciname.twk-dump. When option 7 is chosen, it loads the files5from the dump files written in option 6.

Build-ret also produces log files. These are found in the directory $RETDB_HOMElog.
Here is a list of the log files and where they are produced:

passl csciname.p3-1og
pass3 csci_name.p4a-log, p4b-log, csci_name.p4c-log
pass5 csciname.twk-log
pass6 twk-dump-log (if invoked without CSCI name)

csci-name.twk-dump-log (if invoked with CSCI name)
pass7 twk-load-log (if invoked without CSCI name)

csci-n7me.twk-load-log (if invoked with CSCI name)

NOW014-91 -C-0240 Fial Repon May 1992 6

I

1 2.2 RET Installation

Once the distribution tape is received, the contents should be extracted using tar (a Unix
utility). This will create a directory named ret, with several subdirectories. All RET users
will need to create an environment variable, $RET DBHOME, which contains the path3 name of this ret directory.

There are several files in the directory SRET_.DBHOME/sys which must be customized. In
the files listed below, the string "$RETDBHOME" must be replaced with the hard-coded
path name of your installation's ret directory (e.g. /common/sun4/ret). The affected files
are:

dd.menu (1 substitution)
dde.menu (1 substitution)
desktop.menu (I substitution)
dpi.menu (1 substitution)
file.menu (1 substitution)
ms.menu (1 substitution)
pi.menu (2 substitutions)
sc.menu (4 substitutions)5 configfile (10 substitutions)

The only other requirements are that the Cadre Teamwork and Crev products must be5installed. Please refer to the Cadre documentation [41 for this procedure.

2.3 System Setup

i Once RET has been installed, the user must load into it the source system to be examined.
There are two steps involved with this:

51. in $RET_DB_HOME/src, update the file search.paths to contain only the names of the
CSCI's which are part of the system to be examined.

5 2. in $RET_DB_HOME/src, create a soft UNIX link to each CSCI entered in search.paths.
(Each CSCI should now have a directory

£ 3. filled with the source files associated with it.)

It should be noted that CMS RET views a CMS-2 system as a set of CSCIs. Each CSCI is a
subdirectory of the overall system directory, containing source files which are presumably
related. Even if there is only one source directory for a project, it should appear as a subdi-
rectory of the project itself, and be considered a CSCI. It is generally advisable for the CSCIs'5 names to be all capital letters.

N

5 N(XJO14-91 -C-0240 Final Report May 19927

I

S Chapter 3.0 Information Extraction

3.1 User Perspective

The user will run this pass on every complete source file in the CMS-2 system. (Include3files are brought in automatically by the files which reference them.) This can be done
using the build-ret script described in Section 2.1, or by issuing the command:

cms2cdifp3 -csci csci_name (filenames I

so that each source file in every CSCI is processed. filename is a non-empty list of the
files to be processed and CSOlname is the name of the CSCI containing these files. (csci_-
name must not contain wild cards, but file-name may.) The command must be issued
within the appropriate CSCI. For each file processed, there will result a middle file and a
comment file, which are used in the later steps. The formats of the middle and comment
files are given in Chapter 8.0.

3 3.2 Internals

The Information Extractor is written in Ada, and has two basic parts (the parser and the
extractor), both of which interface to our internal representation of the CMS-2 language.
The parser and internal representation were completely reused from the CMS2Ada trans-

lator, with a few extensions to expand our language coverage. (These are detailed in the
description of the parsing package in 3.2.2.) Parts of the extraction mechanism were
adapted from JRET (the Jovial Reverse Engineering Technology), but much of it was
rewritten because of the differences between the internal representations of CMS-2 and
Jovial. The new version was written with liberal use of generics and non-language specific
data structures, with the hope that most of it will be reusable should we ever want to5 reverse engineer another language.

The remainder of this section contains a brief Jescription of the packages in the Informa-
tion Extractor, the relationships between them, and a more detailed look at some of the
more important packages.

3 3.2.1 The packages comprising the Information Extractor

In the list that follows, * indicates almost complete reuse, # indicates significant reuse, and3italics indicate that the package is generic.

* Main * (contains main driver, handling command-line interface and file control)

I * CMSRecords * (description of the nodes which make up the internal representation)

* CMSInterface (access routines for CMS_Records)

3 *CMS_Utils (some general utilities not available in CMSInterface)

* Parse * (creates a parse tree, made up of structures from CMSRecords)

e *Lexical Analysis *

NOO14-91 -C040 FaW Rqxxt may 192

I

5• Symbol tables and symbol table management * (several related packages)

*ParseControl * (helper package for parser and classification routines)

• ExtractInfo # (high-level node-processing routines; basically sorts out the nodes)

e DataProcessing # (mid- and low-level routines specific to data declarations)3e ExecutableProcessing # (mid- and low-level routines specific to executable state-
ments)

S* Option-Processing (mid- and low-level routines specific to option statements)

* Structure_Processing (mid- and low-level routines specific to structure statements)

* Subprogram-Processing # (mid- and low-level routines specific to subprogram decla-
rations)

*PrintMiddle # (language-independent printing routines; mainly utilities)

•SourceJfile_database * (associates nodes with file names and line numbers)

* Scoping# (determines which data items are global and which are local)

e Subprogram_Lists # (data package for communication between SubprogramPro-
cessing and ExecutableProcessing)

5 e System-Info (data package indicating what options are currently in effect and what
structure is being processed)

3 *Debug-Flags * (framework for dubugging)

* CommentHandler # (received comments and context indications from the parser and
prints to the comment file as appropriate)

- CommentHelper (Language specific utilities unique to comment handling)

Figure 5 shows the with'ing relationships between these packages.

I
I
I
I
I
I

!N00O14-91-C-024 Final Report May 19929

Optp Struc Data P Sub Exec-P

EIyif rn-idl M-tl cpn

In addition, almost all the packages with and
use cms-records and cmsjinterface, theI packages containing the internal representa-:
tion for CMS-2

..
5 I~J =relatively language-independent E J=language-dependent

FIGURE 5. Wlth'lng Relationsbips between Packages

N0014-91-C.040 FnaRapon may 199 10

3

1 3.2.2 Details of Important Packages

Parsing and Representation Packages: These include CMS_Records, CMSInterface,
and the parser, lexical analyzer, and symbol-table packages. As a baseline, we reused these
packages from the CMS2Ada translator, but extended them as part of this contract to
address certain CMS-2 constructs which were not previously handled. These include
macro expansions (via the means and exchange statements), user-defined type declara-
tions, and the terminate phrase. In addition, a means for processing cswtch directives was3 designed, but not implemented.

ParseControl: is a generic package containing a pointer to the top node of the parse tree3 and the routine which calls the (instantiated) parser and extractor.

Extractlnfo: contains the top-level extraction routine, and those generalized routines
which classify each node and drive the processing. The top-level extraction routine also
takes care of the file control for the middle file being created.

Visible Routines:
Process_A_Node
ProcessSeqOf_Nodes
IsReceptacle
Process_Receptacle
ProcessSeqOLReceptacles
IsExpression
ProcessExpression
ProcessSeqOLExpressions3Extract

Data_Processing: contains routines to classify and process the nodes which represent data
declarations. The processing includes checking the declaration for usages of other data
items, and printing appropriate information to the middle file.

Visible Routines:
IsData_Decl
Process_DataDecl

Executable_Processing: contains routines to classify and process the nodes which repre-
sent executable statements. The processing includes checking for data uses and subroutine
calls, and keeping track of any which are found.

5Visible Routines:
Is_Executable_Node
ProcessExecutable_Node

Option-Processing: contains routines to classify and process the nodes which represent
option statements. The processing generally entails setting global variables to reflect the
options found.

Visible Routines:5IsOption.Node
N0001 4.91 -C.4 Final Report MAY 99 it

I

I ProcessOption_.Node

Structure_Processing: contains routines to classify and process the nodes which represent
structural statements. This processing generally consists of making sure all statements
within the structure are processed.

Visible Routines:
ls_Structure_Node
ProcessStructureNode

1Subprogram-Processing: contains routines to classify and process the nodes which repre-
sent subprogram declarations. This processing includes setting up a framework in which
to collect information about the subprogram's activities, making sure all statements within
the subprogram are processed, and writing the information collected to the current middle
file.

I Visible Routines:
IsSubprogramDecl3 ProcessSubprogramDecl

Print_Middle: is a generic package which contains a fie pointer to the middle fie, and
routines to handle much of the printing for it. The idea behind this package is that the for-
mat of the middle file is language-independent, even though the internal representation of
the information is not. Therefore, the routines in printmiddle use language-specific
instantiated "helper" routines in order to access any extra information needed, and then
print everything out in a standard format.

Visible Routines:3 NewMiddle_File
GetMiddleFile
CloseMiddleFile
CommaSpace
PrintComponent_Decl
PrintExtended_Name
PrintFormals
Print_Simple_Decl
Print_Start_ofComposite_Decl
Print_Source_Info
Print_1W_Attribute

5SubprogramLists: is a generic package which contains the infrastructure which the sub-
program-processing routines use to keep trac k of the reference information collected. It
serves as the prime communication mechanism between the SubprogramYrocessing and
ExecutableProcessing packages.

Visible Routines:3 AddToCalls
PrintCalls
AddToReads5PrintReads

N0o004-91 -C4M Final Repor My 19M 12

I

i Add_To_Writes
PrintWrites
PrintReadsAndWrites
InitializeSubprogramLists
UpdateReadsAndWrites
Push_Locals
PopLocals
Add_To_Locals
Add_To_Params
MemLocals
MereParams

5Chapter 4.0 Comment Processing

3 4.1 User Perspective

The user will run this pass on every .comment file produced as a result of the Information
Extraction. This can be done using the build-ret script described in Section 2.1, or by issu-
ing the command

gawk .f $RETDB HOME/cmsrev/bin/comentsawk *.comments

(see Section 2.2 for the proper setting of the $RETDBHOME environment variable).
(gawk is gnu awk. If your installation does not own a copy, use the one in $RET_DB_-
HOME/cmsrev/bin.) Since this capability must be sensitive to the commenting conven-
tions of the current project, it is recommended that the user customize the comments.awk
program to reflect the prevailing conventions. Those planning to do this customization3would be well-advised to read Section 8.2, which describes the format of the .comment
files.

34.2 Internals

*The .comment files written by the Information Extractor contain a line for each comment
found, and one for each "interesting" construct encountered in the source code. Interesting
constructs include data declarations, subprogram declarations, header blocks, proc and dd
statements. Thus the files contain not only the comments, but some context condensed out
of the source code. A distinction is made between COMMENT ... $ constructs and in-line
comments, resulting in even more context information.

I The purpose of the comments.awk program is to create an .ext com file for each subpro-
gram declaration found in a .comment file. This .ext com file contains exactly the text
that will eventually appear in the Mspec for that subprogram in the Cadre database. The
standard comments.awk program, included with this release, selects as relevant the com-
ments which fall between the subprogram's declaration and its actual code.

I
IN00D14-9 I-c-0240 Finul Rapcv May 1992. 13

U

U Chapter 5.0 System Integration

3 5.1 User Perspective

There are several passes involved in this activity. They can be run via the build-ret script
described in Section 2.1, or by issuing the following commands:

(in each CSCI directory)
cms2cdif.p4a -csci csc_name *.middle
(in parent directory)
cat *.decls I sort I awk -f $RET_DB_HOMFadmin/p4b.awk
cms2cdif.p4b -P search.paths *.export
(in each CSCI directory)
cms2cdif.p4c -csci csci_name -crev -mspec -dde *.middle3 $RETDB_HOME/admin/dopost csci-name

(See Section 2.2 for a description of the $RET_DBHOME environment variable.) If the
passes are run outside of the build-ret script, there is a set of files which must exist before
running them. In each CSCI, limits.txt must be present. This should be copied from
$RETDB HOME/admin, or it can be made an empty file, in which case no DDE's will be
produced. In the CSCI's parent directory, search.paths must exist. It will contain the
names of the CSCI's which are to be active (this would typically be all of the subdirecto-
ries).

I The output of these steps is the set of files twk.script, ret.crev, ret.ctl, ret.dd and ret.ms.
These are used in building the Teamwork/SD reverse engineering database.

3 5.2 Internals

3 The purpose of these steps is to reconcile any name clashes which may occur either
within or between CSCI's, to resolve inter-CSCI references, and to build the CDIF" repre-
sentation of each CSCI's information. Briefly, the processing responsibilities are divided as
follows: cms2cdif.p4a compiles two lists for each CSCI, one for data item names and one
for subprogram names. p4b.awk and cms2cdif.p4b create new names where necessary to
avoid name clashes. cms2cdif.p4c creates the CDIF files which will be fed into the Team-
work database, and a script for loading them. do-post edits a few files so that the Team-
work extensions will read them correctly.I

a

5 1. CASE Data Interchange Format

NOOXf49iC.-40 . Fv Repun May 1992 14

U

U Chapter 6.0 Building the Teamwork/SD Reverse Engineering
Database

6.1 User Perspective

I The CSCI's for the databases being constructed must exist in Teamwork. If they do not,
then start Teamwork and create new models with these CSCIs' names. Once the models
exist, construct their respective databases either by using the build-ret script described in
Section 2.1, or by issuing the following command in each CSCI:

/bin/sh twk.script

6.2 Internals

I This step invokes crev and twkput to build the database. crev uses ret.crev and ret.ctl to
produce the Teamwork structure charts, and twkput creates Mspecs from reLms, and3 DDEs from ret.dd.

Chapter 7.0 TeamWork Environment

7.1 Invocation

I In order to use the extensions GE-supplied extensions, Teamwork must be invoked using
the RET config-file. This configjfile must be customized during installation, as described
in Section 2.2. Once that is done, invoke Teamwork as follows:

teamwork -c $RETDBHOME/sys/configfile

3 (See Section 2.2 for the proper setting of the $RET_DBHOME environment variable.)

7.2 Basic Teamwork Displays

IMost of the Teamwork displays are standard to the Teamwork environment, and are
explained in the Cadre documentation. The Mspec and DDE displays are somewhat cus-3 tomized for RET, so they are described here.

The Mspec (Module Specification) display is intended to describe the important aspects of
a module. In this context, a module corresponds to a subprogram. The information con-
tained is the following: subprogram parameter names and directions; global variables
accessed, along with an indication of whether they are read or written; modules called;£ calling modules; and comments extracted from the source code of the module.

The DDE (Data Dictionary Entry) display is intended to convey the important features of a
data item. The information supplied for a simple variable includes: type information;
actual location (file and line number) of its declaration; and location of its declaration, tak-
ing into account include expansions. For arrays, the number of dimensions, direction, and5 any field names are also included.

NOCO141-WOA4O Fa Repa May 1992 15

U

3 7.3 GE-Supplied Extensions

The user should consult the Cadre documentation for information on the standard Team-
work environment [3]. What follows here is a description of the GE-supplied extensions to
that environment, and guidelines for how to use them.

I Displaying Source Files: There are times when the summarized information is not suffi-
cient for the task at hand. In these cases, it is useful to have a quick method of viewing the
actual source code. In order to do this, select a module of interest from a structure chart or
Mspec, or a data item from a DDE, and choose the RET menu item "Display Module
Source". The corresponding source file will be displayed, and the user can then search on5the name of the module or data item in order to find the desired declaration.

Displaying Data Usages: It is often important to know which modules use a particular
global variable. This information is available from the full Data Dictionary as well as the
Mspec display. To view it, simply select the desired global variable, and choose either
"Display Where Ref" or "Display Where Ref All" from the RET menu (the latter extends
the search across all active CSCIs). The information will be retrieved and displayed in a
window which lists the modules in which that data item is referenced. From that window,
the user may move to the Mspec for any of the referencing modules by selecting its entry

I and choosing the RET menu item "Show Module Spec".

Displaying Calling Modules: Although the structure charts are effective in showing the
called modules of a particular subprogram, it can be tedious working backwards to find the
calling modules. There are two ways to find this information easily. The first method is to
view the Mspec of the desired module and find the list of calling modules. The second
method is to select the desired module from a structure chart and choose the RET menu
item "Display Calling Modules". The information will be retrieved and displayed in a
window which lists the modules which call the selected one. From that window, the user
may access the Mspec for any calling module by selecting its entry and choosing the RET
menu item "Show Module Spec". (From there, "Show SC" from the WholeMspec menu
will bring up the corresponding structure chart.)

Displaying Mspecs from Structure Charts: When viewing a structure chart, select the
desired module and choose the RET menu item "Open Module Spec". The corresponding3 Mspec will appear.

Displaying DDE'sfor the Fields of a Table: When viewing the DDE of a table or array, it is3not enough to see just that item's information; the component items' entries are equally
important. These can be viewed easily by highlighting the desired name within the table's
DDE and then choosing the RET menu item "Open DDE". A new DDE window will open
with the desired entry.

For a more in-depth description of the GE-enhanced Teamwork environment, please see3 the.CMS RET User's Manual found in Appendix A.

F
N 10001491C0 4 F id Rapai My 1992 16

I

U Chapter 8.0 File Formats

3 8.1 Middle Files

The middle files hold the information which is extracted from the CMS source files, before
it is integrated into a system view. In the case that this technology were ported to a CASE
tool other than Cadre, these files would be the starting place for the re-implementation.The
following is the grammar for the middle files.

file::= "file" string-literal ["csci" identifier] Ideclaration }

declaration ::= context_decl I externaldecl I subroutine_decl I object_decl I
group-decl I type-decl

3 context_decl "context" identifier [idlist] [sourceinfo I

context_list ::= context_decl)

external_decl ::= "external" globa-declaration

global-declaration ::= subroutine_decl I objecLdecl I type.Aecl

subroutine_del procedure_decl I function_decl

procedure_decl "procedure" identifier [source-info]3 subroutineinfo "end"

function_del "function" identifier (sourceinfo] typeinfo3 subroutine_info "end"

subroutineinfo::= ["long" "name" stringjiteral]
[formal-list] [local-list] [contextlist] [callsjist] [readslist]
[writeslist [readswritesjist] [nestedsubsjlist]
["header" "file" stringliteral] ["copy" "files" string literal]

S[pseudo code-list]

object-decl simpledecl I composite_decl

simple.decl:: = "simple" identifier ["constant"] [source-info]
["csci" identifier] twattr typejnfo ["members" list]

compositedel ::= "composite" identifier ["constant"] compositesclass
[source_info] ["csci" identifier] [index-info] tw.-attr
component.ist I typeino)

indexinfo ::= "indexed" "(" integerJiteral ")"

NOWo4-91-C4 Fm Rep M y 1992 17

U

I twattr::- [tw._prim] twflow

3 twprim::= "PEL" I "CEL" I "DEL"

twflow::= "controlflow" I "dataflow" I "bothflow" I "store"

I group-decl ::= "group" identifier [source-info] ["csci" identifier]
(declaration) "end"

U formallist ::= "formals" "(" formal ["," formal } ")"

5 formal ::= identifier direction typeinfo

local_list ::= "locals" idfist

a_call ::= identifier ["nested"] [actuallist]

5 actuallist "(" actual ("," actual }

actual ::= ("C' object-decl ")") I identifier

direction ::=("in" ["out"]) I "out"

3 type._decl ::= "type" (simplejtype-decl I compositetypejdecl)

simple-type-decl ::= "simple" identifier [sourceinfo] ["csci" identifier]
twattr type-info ["members" list]

composite type-decl ::= "composite" identifier composite_class
[sourceinfo] ["csci" identifier] [index-info] tw-attr
(componentlist I typeinfo ["members" list])

3 component_list ::= "C' [(simple_decl I compositeJecl)

("," (simpledecl I composite.decl)] ")"

I compositeclass ::= string-literal

3 type -info::= string-literal

calls_list::= "calls" "(" a-call { "," a.call ")"

I readslist ::= "reads" id.list

3 writes_list ::= "writes" idlist

readswritesjist ::= "readswrites" id_list

N0004-9-C-O4F" aReportt& Ma 199s

I

Unestedsubs list ::= "nested" { subroutine-decl}

pseudoscode_list ::= "pseudo_code" list

list::= "(" string-literal "," string-literal) ")"

I id_list ::= "(" identifier ("," identifier) ")"

3 source info::= integerliteral string-literal [integer_literal string-literal]

identifier::= stringjliteral I reserved_word-oflanguage

8.2 Comment Files

The comment files contain both the CMS-2 comments and some condensed context infor-
mation. These are the files which are input to the comment processor, which then producesIone .ext com file for each subprogram, containing any relevant comments. The awk script
of the comment processor is user-customizable.

3_m file ::= (entry)

entry::= commenLentry I contexLentry

comment-entry ::= sameline entry I standalone-entry

3 sameline.entry ::="SAME LINE: "string

stand_aloneentry ::= "COMMENT. " string

context_entry ::= datadecl I subprogramdecl I structural_entry Ig "CODE" I "UNKNOWN CODE"

datadecl ::= "DATA" I "EQUALS" I "FIELD" I "LOADVRBL" I
"NITEMS" I "PARAMETER" I "SYS-INDEX" I "TABLE" I
"VARIABLE"

subprogramdecl ::= "EXEC-PROC" identifier I
"FUNCTION" identifier I
"PROCEDURE" identifier I3m "END"9

structural-entry ::= "AUTO-DD" I "END-LOC-DD" I
"END-MAJOR-HEADER" I "END-SYS-DD" I "END-SYS-PROCI
"END-SYSW ' I "LOC-DD" I "MAJOR-HEADER" I

"MIOR-DD" I "PROGRAM-BODY" I "SUBPROGRAM-DD" I
"SYS-DD" I "SYS-PROC" I "SYSTEM"

WN10I4-91 -C.024 Fal Rqext May 1992 19

I

I Part H ENCORE-MODEL Integration Study

Task IH of this project sought to study the feasibility of integrating GE's ENCORE system
with Computer Command and Control Corporation's (CCCC) MODEL system. The initial
phase of the study compared the functionality of the two systems to determine whether it
makes sense to integrate them. This was followed with the design of a method for integrat-
ing the two systems. As a result of our study, we have concluded that the two systems
could functionally complement each other and that there are no insurmountable technical3 barriers blocking the integration. The issues involved with integrating the two systems are
discussed in the following paragraphs.

The ENCORE system promotes reuse of heritage code via automatic translation and
reengineering. Components of the ENCORE system include translators from FORTRAN to
Ada and CMS-2 to Ada, control and data restructuring, basic metric capabilities, limited3 dataflow analysis, and the ability to parse and regenerate Ada programs. The restructuring
components (control and data) provide an automated mechanism for understanding and
improving the fine grained aspects of a software system. The MODEL system provides an
environment for viewing and modifying the coarse grained architectural features of an
existing software system. Combining ENCORE and MODEL would produce an environ-
ment for reengineering both at the fine grained and coarse grained levels.

Combining the two systems would require that they share the information about the code
being reengineered. Currently both systems operate on their own distinctive internal repre-
sentation of Ada code. (The ENCORE internal representation is called the IRep and the
MODEL internal representation is called the ESL.) Since the implementations of the two
representations are vastly different and a great deal of reengineering functionality has
already been developed specific to each implementation, we recommend a loose coupling
of the two systems via translation between the two internal representations. Though the
implementations of the two internal representations are vastly different, they both embody
the same information and the mapping from one internal form to the other appears to be
straightforward.

•*1 This approach avoids the reimplementation of reengineering capabilities just for a differ-
ent internal representation and it allows the two companies to further develop their prod-3 ucts without having to tightly coordinate changes.

The only stumbling point in this integration scheme is a platform problem. The ENCORE
system runs on a UNIX I platform and currently uses the SunView2 windowing system. The
MODEL system is tightly coupled with the DECdesign3 system and therefore must run on
a VMS platform. This problem can be overcome by either moving one system to the other
platform, or creating a mechanism for passing the information between the internal repre-
sentations (and therefore between machines) via ASCII files.

3 1. UNIX is a registered trademark of AT&T Bell Laboratories
2. SunView is a trademark of SUN Microsystems, Inc.3 3. DECdesign is a trademark of Digital Equipment Corporation

r I2014-91-C-024W FWiaI Rapet May 1992

I

I If the ENCORE user interface were rewritten in X, then ENCORE could run on the VMS
platform. To move MODEL to a UNIX platform, CCCC would have to either get an imple-
mentation of DECdesign for UNIX or replace the use of DECdesign in MODEL with some
other database and visualization system. Either option involving MODEL is estimated to
require more effort than moving ENCORE to VMS. We advocate changing the ENCORE3user interface to X, if integrated performance on a single platform is required.

The alternative to changing platforms is to provide a mechanism for passing the informa-
3 tion between the two reengineering systems via ASCII files. To use the systems in an inte-

grated manner, one would follow the following sequence of steps: 1) a collection of Ada
source code would be reengineered using one of the systems; 2) ASCII files capturing the3 all the necessary information would be generated and passed to the other system; 3) the
other system would be used to further reengineer the Ada. (The passing of the ASCII files
would be bi-directional.) When the reengineering is finished, new Ada code would be
regenerated capturing the reengineering modifications made by both systems. With this
scenario, the ASCII files would have to completely capture all the information in the inter-
nal representations and both systems would have to be able to parse and print these ASCII5 files.

Since the internal representations for the two systems currently contain the exact same
information as is contained in an Ada program, we have the option of choosing either an
abstraction of one of the internal forms or restructured Ada code for the format of the
ASCII files. A shortfall of the latter option is that it precludes future expansion of the inter-
nal representations. We expect that in the future we will want to expand MODEL and
ENCORE to be able share computed information about the Ada code. Using Ada code as
the means of communication between the two systems would prohibit this expansion.5Therefore we recommend choosing an abstraction of one of the internal forms.

The ENCORE system currently has a prototype version of an ASCII fie parser and printer
which consumes and produces an abstraction of the IRep. We call this software our IRep
Inputter/Outputter. As mentioned above, this software is only in prototype form at this
time, but with minimal effort it can be extended to handle the complete ENCORE IRep.
The software is written in Ada and can easily be integrated into both MODEL (under
VMS) and ENCORE (under UNIX).

3 In summary, we are suggesting translation between the MODEL ESL and ENCORE IRep as
the best way to integrate the two systems. To accomplish this an ESL + IRep translator

* must be built and either ENCORE will have to be moved to the VMS platform, or the IRep
Inputter/Outputter will have to be made more robust and incorporated into both MODEL
and ENCORE. The following pages provide an outline and estimates of the tasks involved

* with each option.

NO014-91-C240 ina Rxepm May 1992 21

I

I Figure 6 illustrates the envisioned system architecture for a merged ENCORE-MODEL sys-
tem where ENCORE has been moved to the VMS platform.

!.................... ..o
I MODEL3ESL le

I n.,..,A...

*

L DECdesign : n n

To ealze he nteraton how inFigre6,e folloing tssms ecmltd3 VMS Platform

FIGURE 6. ENCORE - MODEL Integration on a Common VMS Platform

To realize the integration shown in Figure 6, the following tasks must be completed:

* Software must be written to translate back and forth between ESL and IRep. (about 9
person months to complete)

e IThe ENCORE user interface must be rewritten in X. (about 9 person months)

e The ENCORE and MODEL user interfaces must be updated to allow the user to switch
between the two systems (automatically transferring from one internal representa-
tion to the other). (about 1 person months - 1/2 person month for each system)

We believe a sound estimate for this form of integration is 20 person months.

I
I
I
3 ?q OO1!4-91, C-040 Ph mil a May 1992 2

I

I Figure 7 shows how to integrate the two systems via ASCII IRep files.

............. MDEL ... C.............~~~~M . L_N C IU E

1 I oE~dsign i

....... 4" Control

II

U reengineering
ASCII moduleslR ep ,........... -----------------------... --

k Ada
VMS Platform Code

I Sun workstation

FIGURE 7. ENCORE - MODEL Integration via ASCII IRep Files b

U To implement the above integration the following must be done:

*Software must be written to translate back and forth between ESL and IRep. (about 9*1 person months to complete) (This is the same as the first bullet with the previousintegration option.)

*The IRep Inputter/Outputter must be made more robust. (about 3 person months to
complete)

S*The IRep Inputter/Outputter must be incorporated into the MODEL system: the file
loading process must be updated to load IRep files using the Inputter and translate
the IRep structure to an ESL structure, and the file writing process must be updated
to translate the ESL structure to the IRep structure and generate the ASCII IRep fies
using the Outputter. (about 2 person months to compete)

" The ENCORE file load and file write must be updated to use the IRep Inputter/Output-
ter. (about 1 month to complete)

We estimate it will take 16 person months to achieve this form of integration.

MNIM14-91-C-O4o FrAd Ren Ma 1992 23

I

I References

[1] CMS2Ada - a CMS-2 to Ada translator developed at GE Corporate Research and
Development. For information contact J. Sturman at GE Corporate Research and Devel-
opment, P.O. Box 8, Schenectady, N. Y. 12301 (518) 387-5457

1 [2] JRET - Jovial Reverse Engineering Technology developed at GE Corporate Research
and Development. For information contact J. Sturman at GE Corporate Research and
Development, P.O. Box 8, Schenectady, N. Y. 12301 (518) 387-5457

[3] Teamwork/SD User's Guide, Release 4.0, Cadre Technologies, Inc., 1990

I [4] Teamwork System Administrator's Manual, Release 4.0, Cadre Technologies, Inc.,
1991

II
I
I
I
I
I
I
I
U
I
I

iN00014-91-CO240 Fired Repai May 1992 24

I
II Appendix A

" CMS RET User's Manual
I
I
I
I
I
U

I
I
I ,

I
I
I
I

I
I
L

I

I CMS RET User's ManualI
1.0 Introduction

I The CMS Reverse Engineering Tool (RET) consists of CMS-Rev and Teamwork/SD. CMS-Rev has been
developed by GE CR&D and provides the ability to process CMS-2 source code and create a software main-
tenance database. This software maintenance database consists of a Teamwork database of structure charts,
module specs, data dictionary entries and collateral files which contain information about the structure and
contents of the source code being maintained. Teamwork/SD is a commercially supported product available
from Cadre Technologies. It has been augmented by user menus, shell scripts and access programs to pro-
vide a customized and enhanced environment which utilizes the software maintenance database created by
CMS-Rev.

This CMS RET User's Manual describes the procedures for using the RET software maintenance database.
These procedures involve the use of the Teamwork/SD product from Cadre Technologies. The section Using
the RET Database documents the basic operations that the software maintainer would need to perform in
order to utilize the software maintenance database.

Also contained in this manual are the procedures for creating the RET software maintenance database using
CMS-Rev, related programs and shell scripts. These procedures are performed in batch mode when neces-
sary because of a new release of the source code being maintained, or as a result of new version of CMS-
Rev. The section Building the RET Database documents the steps necessary to build a new RET software
maintenance database. The section Installing the RET Processors documents the steps necessary to install3 CMS Rev, related programs and shell scripts before beginning the process of building a new RET database.

2.0 Using the RET Database

2.1 Invoking RET

I RET is invoked by executing Teamwork using the RET configuration file. This can be accomplished by
manually typing the Teamwork command or by selecting the appropriate menu item from an OpenWindows
workspace menu. The user then interacts with Teamwork to access the RET software maintenance database.
The RET configuration file provides the user with access to the customized RET menus and to the special-
ized programs which access the RET software maintenance database.

A number of setup operations need to be performed before RET can be invoked: (1) Modify the Unix PATH
variable to include the Teamwork directories. (2) Initialize the Unix environment variable RETDBHOME
to specify the RET root directory. (3) Verify that the Teamwork DC server is running on the Teamwork3 workstation server.

2.2 Using the Online Help

Each of the RET menus has a menu selection tided "Display Help Screen" that is the last selection on the
menu. Selecting this menu item will cause the context sensitive help screen to be displayed in a Teamwork
window. In addition to a description of each menu item available to the user, there may appear hints to the
user on how to perform specific operations.

Appmdix A May 1992

I

2.3 Selecting the Model of Interest

The first operation that the user must perform is to select the model of interest. Any further operations will
then pertain to is model which corresponds to a Unix directory.

The model of interest is selected by pulling down the Index menu from the desktop menubi, and selected
the menu item titled "Open Model Index." This will cause a list of the models in the Teamwork database to
be displayed. Highlight the model of interest and select "Open Pr" from the pullright menu. The Teamwork
process index for the selected model will be displayed. From this process index window, the user may access
structure charts, module specs, and the data dictionary associated with the selected model

2.4 Navigating Structure Charts

Structure charts provide a graphical representation of the calling relationships between software modules.
The structure chart can be used as a "map" to guide the software maintainer in his/her understanding of the
underlying software. Off-page connectors are used in structure charts so that the amount of information on a
given structure chart is not excessive. The intent is to maintain readability when RET-generated structure
charts are printed on 8 1/2 by 11 inch pages.

To navigate downward in the module calling hierarchy using structure charts, the user may open the struc-
ture charts for a specified off-page connector. This is accomplished by selecting the off-page connector with
the mouse select button (left mouse button), pulling down the RET menu from the structure chart menubar
and selecting the menu item titled 'Expand Connector." The structure chart for the off-page connector will
then be displayed.

To navigate upward in the module calling hierarchy using structure charts, the user may request to display a
list of modules which call the current module. The current module is, by default, the module at the top of the
structure chart. The user may override this default module by explicitly selecting another module on the
structure chart as current. The list of calling modules is obtained by pulling down the RET menu from the
structure chart menubar, and selecting the menu item titled "Display Calling Modules." This will cause a file
window to open with a listing of calling modules. Any line of this file display may be selected to request the
structure chart for that calling module by pulling down the RET menu from the file menubar and selecting
the menu item titled "Open Structure Chart." The structure chart for the selected calling module will then be
displayed. (NB: this is not currently working. Workaround: choose "Open Module Spec" from the RET
menu and then choose "Show SC" from the WholeMspec menu).

During the search, an icon is displayed with the title "CALL." This icon will disappear when the search is
completed, and at that time a Teamwork window will display the results of the search. The "Display Calling
Modules" request may be aborted using the normal Unix window procedure to quit a task represented by the

I CALL icon.

2.5 Selecting the Module of Interest

A module is a CMS-2 subprogram. Modules are identified by the RET and a module spec is created for each
module. In addition, the boxes on structure charts are used to represent modules.

Modules are listed on the process index which is displayed when the model of interest is selected. The pro-
cess index lists the module specs and structure charts that are contained in the Teamwork database. The
module of interest may be selected from the process index, and then either a module spec or a structure chart
may be opened. Each process index entry has a SC or MS indicated. SC refers to structure chart and MS
refers to module spec. A structure chart may be opened by selecting a module name flagged with an SC,
pulling down RET from the process index menubar and selecting the menu item titled "Open Structure

Appmdix A Mty 992 2

I

Chart." A module spec may be opened by selecting a module name flagged with an MS, pulling down RET
from the process index menubar and selecting the menu item titled "Open Module Spec."

5 Structure charts show the calling relationships between modules. The module of interest may be selected
from a structure chart by pointing the mouse cursor at the structure chart that represents the module of inter-
est. and pressing the select mouse button (left mouse button). Then, the user may pull down the RET menu
from the structure chart menubar and select the desired menu item. The module of interest may be selected
from a module spec by selecting the text in the module spec body which is the name of the module of inter-
est. Text in the module spec body is selected by moving the mouse cursor on top of the first letter in the text
string. The mouse cursor should tur from an arrow into a block. The select mouse button (left mouse but-
ton) is then pressed and the mouse cursor is dragged across the letters of the text string. The selected text
will appear in reverse video. Then, the user may pull down the RET menu from the module spec menubar
and select the desired menu item.

2.6 Determining Module Interfaces

5A module interface is a relationship between modules where one module calls the other module. Module
interfaces are represented graphically by structure charts, and textually by information in module spec bod-
ies. Module interfaces may be obtained by displaying the appropriate structure chart or module spec. From a
module spec, the user may open a Teamwork window for the structure chart containing the module spec.
This is accomplished by pulling down the Whole Mspec menu from the module spec menubar, and select-
ing the menu item titled "Show SC." This will cause the appropriate structure chart to be displayed.

2.7 Viewing Module Source Files

Module source files are the raw CMS source files. Module source files may be displayed by selecting the
module of interest from a structure chart, or from a module spec body. Then, the RET menu item tided "Dis-
play Module Source" may be selected to complete the request for a Teamwork file window to be opened on
the raw source file.

An important distinction to remember is that the name of a module is not necessarily the same as the name of
the source file containing the module. The boxes on structure charts and the "calls" and "called by" section
of the module spec body all use module names, not file names.

2.8 Searching Source Files for Text

A facility for searching raw source files has been built into RET. This facility is available from the process
index menubar. The user selects the model of interest and opens the appropriate Tbamwork process index
window. The user then pulls down the RET menu from the process index menubar, and selects the menu
item tiled "Search Source Files." This causes a Teamwork input window to be displayed which requests the
user to input the filename and text patterns. The filename pattern is a standard Unix filename pattern, includ-
ing the use of? and * for wildcards. The text pattern is a grep regular expression, which needs to be enclosed
within either single or double quotes if the text pattern contains special characters.

After the filename and text patterns are input, a Unix task is invoked to perform the search on the source
files. During the search, an icon is displayed with the title "SCH." This icon will disappear when the search
is completed, and that time a Teamwork window will display the results of the search. The "Search Source
Files" request may be aborted using the normal Unix window procedure to quit a task represented by the
SCH icon.

Source files may also be searched across all CSCIs. This is accomplished using the "Search Source Files"
menu item on the RET menu of the Teamwork desktop menubar.

Appmdix A My 92 3

I

1 2.9 Selecting the Global Variable of Interest

Global variables are variables which are used outside of the module in which they are declared. These global
variables are listed alphabetically within the data dictionary for each model, and also as part of the module
spec for modules which reference the global variable. The data dictionary is displayed for the model of inter-
est by pulling down the "Whole_Model" menu from the process index menubar, and selecting the menu item
titled "Open DD." This will cause the requested data dictionary to be displayed. The global variable of inter-
est may be selected from this display of the data dictionary by moving the mouse cursor to the desired line ofthe data dictionary and pressing the select mouse button (left mouse button).

I When a module spec is displayed, the global variables listed may also be selected as the global variable of
interest. This is accomplished by moving the mouse cursor on top of the first character of the name of the
global variable. The mouse cursor will change from an arrow to a block. The user presses the mouse select
button (left mouse button) and drags the cursor across the global variable name until all the characters are in
reverse video. At this point, the global variable of interest on the module spec has been selected.

1 2.10 Viewing Data Dictionary Definition of Global Variables

The data dictionary contains an entry for each global variable. This entry contains information about the glo-
bal variable, including the actual declaration of the global variable, and information about the raw or
expanded source files. The declaration contains the type of the variable if the variable is an item. If the vari-
able represents a table, then the declaration contains information about the types of the items in the table.

When a global variable of interest has been identified from the data dictionary display, then the RET menu
from the data dictionary menubar is pulled down, and the menu item titled "Open DDE" is selected. This
will cause the data dictionary entry to be displayed. When the global variable of interest has been identified
from the module spec display, then the RET menu from the module spec menubar is pulled down, and the
menu item titled 'Open DDE" is selected. This will cause the data dictionary entry to be displayed.

A data dictionary entry may reference other data dictionary entries. This happens when the global variable
represents a table or a block. In these cases, the name of the referenced data dictionary entry may be selected
and the RET menu may be pulled down from the data dictionary entry menubar, and the menu item tided
'"Open DDE" selected. This will cause the selected data dictionary entry to be displayed in a new data dictio-
nay entry window.

1 2.11 Searching Module Specs for Variable References

Global variables are associated with modules, and their module specs. A capability exists to perform a
search for the modules which reference a particular global variable. This search is performed when the user
selects a global variable of interest, from either the data dictionary or a module spec, pulls down the RET
menu from the respective menubar, and selects the menu item titled "Display Where Ref."

i After the global variable cross reference is initiated, a Unix task is invoked to perform the search within the
Teamwork database. During the search, an icon is displayed with the title "REF." This icon will disappear
when the search is completed, and at that time a Teamwork window will display the results of the search.
The "Display Where Ref" request may be aborted using the normal Unix window procedure to quit a task
represented by the REF icon. Module specs for modules identified in the cross reference display may be dis-
played by selecting the name of the module in the cross reference display, pulling down the RET menu from
the file menubar, and selecting the menu item tided "Show Module Spec." This will cause the respective
module spec to be displayed.

Appdix A M"m9 4

I

Global variable cross references may also be performed across all CSCIs. This is accomplished using the
"Display Where Ref All" menu item on the RET menu of the data dictionary or module spec menuber.

1 2.12 Printing From the RET Database

The user may obtain printouts of the process index, the data dictionary index, structure charts, module specs,
data dictionary entries, any Teamwork file window that has been opened, and any expanded module some
mie.

12.13 Terminating Teamwork

Before terminating Teamwork, be sure that all Teamwork windows have been closed. Then, pull down the
"Stop" menu from the desktop menubar and select the menu item titled "Quit". This will terminate the cur-
ret Teamwork session.

3.0 Building the RET Database

1 3.1 CMS Rev Processor

CMS Rev consists of three (3) separate passes. These passes combine to process the CMS-2 code, to process
the comments and to generate the output files used to create the RET software maintenance database. The
CMS Rev processor can be executed using the shell script called build-ret which is listed in the last section
(Details of Setup). This shell script takes care of deleting old versions of the build log files, and allows the
user to monitor its execution with time and date stamped messages informing the user of what pass is cur-
rently being executed. The file $RETDB_ HOME/src/csci-build is used to determine which CSCIs are
being processed by CMS Rev in the current execution.

3.2 CMS Rev Post-Processors

IThe CMS Rev post-processors augment the processing performed by CMS Rev. Two operations are per-
formed. (1) modify some CMS Rev output files before they can be used by the RET interactive programs,
and (2) analyze some CMS Rev intermediate output files to create additional output files for use by the RET
interactive programs. This CMS Rev post-processing has been combined into a shell script called build-twk
This shell script should be executed once for each CSCI.

1 3.3 C Rev and twkput Processors

The C Rev and twk.put processors are Teamwork programs which are used to load the Teamwork data base.
C Rev uses CMS Rev output to create structure charts in the Teamwork database. twk-put uses CMS Rev
output to create both module specs and data dictionary entries in the Teamwork database. A shell script
called retscript is created by CMS Rev to be used in loading the Teamwork database.

A
A!edx My19

_" 4.0 Installing the RET Processors

-- 4.1 Teamwork Processors

The Cadre Teamwork products that must be installed include Teamwoik/SD and Teamwork/C Rev. The
Teamwork/C Rev Browser is not needed by the RET.

4.2 CMS Rev Processors

The CMS Rev processors consists of multiple passes as follows: cms2cdif.p3, cms2cdif.p4a, cms2cdif.p4b,
and cms2cdif.p4c. These executable programs should be installed before CMS Rev can be used to build the

m RET database.

£4.3 CMS Rev Post-Processors

The CMS Rev post-processors consists of the following programs:

3build-ret
build-twk
build-csc
do-errors

1 5.0 Details of Set-up

5.1 Environment Variables

There is on major environment variable which must be set before nmning REP

5RET_DBHOME - the directory in which all the executables and shells live

gm 5.2 Scripts (preliminary versions)

There are several scripts which are useful in running RET (although it can be run manually). These scripts
can be found in RETDB_HOME/admin, and they are as follows:

w build-ret - a multi-function script which asks for user direction upon invocation. It's current
functions are: CMS Rev Pass3; CMS Rev Comment Extraction; CMS Rev Pass4;
Post-Process CMS Rev; Create Teamwork Database; Dump Teamwork Database; and
Restore Teamwork Database. The user is encouraged to review the script in order to
get an understanding of how RET is put together.

3 -ret - a script which invokes Cadre Teamwork with the proper configuration file, etc.

£ 5.3 Directories

There we two directories which the user should set up for each model. The first is SRET DBHOME/src/
- model_name. This directory should contain the source files for the model. (This may be a soft link, if it

SAfmdx A y 1992 6

I
3 proves convenient.) The second directory is $RETDB.HOMElst/modname. This should be created as

an empty directory. CMS RET places files in there during its processing.

£ 5.4 Files

There are two files which the use may wish to update. They are $RET._DBHOME/datsci-build and
$RETDBHOME/da/csci-names. These ar normally not needed for RET, but can be useful for rebuilding
the entire system via build-ret. They should contain the model names for the system, one per line.

3 There is one file which the user must add to the SRET_DB_HOME/src/model_name directory: liiits.txt.
This file should have exactly one line in it which says "do globals".

I
I

I

I
U
U
I

I
£
i
3

i uidi A May 1992 7

U
U Appendix B

Introduction to ENCORE Internal
* Representation

1
I
U
I
I
I
I
I
I
U
U
I
U
U
I

U

* Introduction to the ENCORE Internal
3 Representation

UThe Purpose of the Internal Representation.

The purpose of the ENCORE Internal Representation (or IRep, for short), is to allow the
various tools in ENCORE to manipulate Ada programs in a straightforward and uniform

i way.

Some goals in the IRep design were:

1. There should be a logical abstract description of the IRep.
2. The IRep should be accessible via a logical interface that is independent of the physical

representation of the IRep in memory.3 3. There should be a clean separation between lexical information and semantic informa-
tion.

3 4. One should be able to reconstruct the original source to an Ada program from the IRep
(modulo differences in formatting).

I The Logical Structure of the Internal Representation

Logically, the IRep is a tree, with some backlinks for handling references to definitions
and labels, and symbol table structures to capture Ada programs. (The tree structure is
quite similar to DIANA, the standard internal representation for Ada.) Each tree repre-
sents the statements in the Ada code and the symbol tables represent the scoping and visi-
bility rules for the identifiers found in the code.

1 The IRep Program Tree

3 The tree structure consists of 'nodes' and 'attributes.' The nodes represent the information
in the tree, while the attributes represent the edges of the tree.

3 The nodes ar grouped into 'classes,' each class corresponding to a kind of Ada construct.
The attributes are also grouped into named classes. As an example, consider the class of
nodes corresponding to Ada assignment statements. Each such node must belong to the
class 'assignment_stmt.' Furthermore, each such node must have two attributes - one
called 'target,' representing the destination of the assignment, and the other called
'source,' representing the expression to be assigned.

B

I

1 1. ADL: The Metalanguage Used to Describe the IRep Trees

The IRep tree is specified in a metalanguage called the Augmented Description Language,
or ADL, for short.

An ADL description consists of a series of 'productions.' The productions, in turn, can be
of the following kinds: stub productions, primitive productions, node productions, and
class productions.

1.1 Stub Productions

3 Stub productions have the syntax

stub <name> ;

I These productions are used to define certain special nodes that are used in processing Ada
programs. There are exactly two stub productions

Ustub Empty;
stub Undefined;

I The first production defines the 'empty' node, which is generally used to an optional
attribute that is not supplied (for example, a missing 'else' clause in an 'if' statement. The
second production generally indicates either an error condition or an unsuccessful opera-
tion. For example, the value returned by an unsuccessful symbol table search is the 'unde-
fined' node.

11.2 Prinmitive Productions

Primitive productions have the syntax

primitive <name>;

I Primitive productions are used to define external data types that are used as data at the
leaves of the IRep trees. The actual productions used in the Ada IRep tree are

Uprimitive Boolean;
primitive Character,
primitive Float;
primitive Integer,
primitive String;3primitive Symbol;

The first five productions correspond to the five predefined scalar types in the Ada pack-
age Standard. The sixth production, 'Symbol,' corresponds to the type 'Symbol,' defined
in the package 'IForm_Symbols.' This Symbol type is used to represent Ada identifiers.

Apmix B may199 2

I

1 1.3 Node Productions

5 Node productions have the form

<name> => <attrl-name>: <attrl -descriptor>,
<attr2-name> : <attr2-descriptor>, ... ;

Node productions describe the internal structure of an IRep tree. The left hand side of a
node production indicates the class of the node involved, while the right hand side gives
the names and attributes of a node of that class.

Attributes can be either simple attributes, whose value is a node, or sequence attributes,
whose value is a sequence of nodes. Simple attributes have the form

<class-name>

while sequence attributes have the form

3seq of <class-name>

An example of a node production having simple attributes is given by the production for
an Ada assignment statement, which is written

assignment_stmt => source: EXP,3 target: REFERENCE;

This production states that each node of the class 'assignmentstint' has two attributes, a
'source' attribute, whose value must be of class 'EXP,' and a 'target' attribute, whose
value must be of class 'REFERENCE.'

As an example of sequence attributes, consider the production for an Ada else clause,
which is written

3 else_clause => statements: seq of STMT;

This production says that each node of class 'else_clause' has the attribute 'statements,'3whose value is a sequence of nodes of class STMT.

One final note. It is possible that a particular class of IRep tree node might not have any
attributes. An example is the class of node that represents 'null' statements in Ada. The
production for this class is written

5 nullstmt => ;

We use a node production, rather than a stub or primitive production because

31. there can be more than one node of class 'nullstint' in an IRep tree structure, which
rules out using a stub production, and

App!ah B may 19 3

I

I 2. the class 'null_stmt' is not imported from another package, which rules out using a
primitive production.

I Class Productions

3Class productions have the form

<class-name>::= <subclassl> I <subclass2> I ... ;

I The classes on the right hand side of the production are called subclasses of the class on
the left hand side.

UClass productions are used for two purposes:

1. To group certain classes together in a manner similar to union types in some program-3 ruing languages, and

2. To enable several classes to inherit one or more attributes.

3A production that satisfies the first purpose is

3 ACTUAL_COMPONENT::= association I otherspart I EXP,

This production says that a node of class 'ACTUAL_COMPONENT' can be either of3 class 'association,' class 'otherspart,' or class 'EXP.' Thus the node production

aggregate => components : seq of ACTUAL_COMPONENT;

3 indicates that a node of class 'aggregate' has an attribute called 'components,' which can
take, for its value, a sequence of nodes, each member of which must be either an 'associa-
tion,' an 'others.part', or an 'EXP.'

To illustrate the second purpose of class productions, suppose we have several different
kinds of nodes that possess a given attribute. In Ada, for example, package specifications,
package bodies, procedure specifications, procedure bodies, etc. all have an attribute
called 'designator,' which denotes the name of the unit. Rather than include a separate
'designator' attribute in each node production, we could write the two following produc-
tions:

SINGLEDESIGNATOR_ITEM => designator: Symbol;

SINGLEDESIGNATOR_ITEM ::= pkg-spec I pkgbdy I proc-spec I...;

3 The attribute 'designator' will then be inherited by all subclasses of the class
'SINGLEDESIGNATOR_ITEM.'

I
A!da3Ma19

I

1 2. The External Representation of IRep Tree Structures

Externally, IRep tree structures are represented as one or more node structures. Node
structures are represented differently, depending on the kind of node involved.

1. Stub nodes are represented by the name of the stub class; thus the two stub nodes in the
1Ada IRep tree are represented by

Empty

Undefined

2. Primitive nodes are represented by the class name, followed by the primitive value,
enclosed in parentheses. Some examples are

Boolean(TRUE)
Integer(3)
Float(5.38)
Character('a')
String("Abc")
Symbol("ABC")

1 3. Structure nodes may be represented by the class name, followed by the attribute names
and values, enclosed within square brackets. An example is

3 assignmentstrut[target n_103A,
source Integer(3)]

4. A structure node may be preceded by a label. This indicates that the node can appear as
an attribute in more than one place in an Ada IRep tree. An example is

n_103: named-ref[designator Symbol("x"),
target n102A]

5. Finally, a labeled node can be represented simply by its label, followed by a caret, as in
the reference n_102A in the previous example. This allows us to represent circular data
structures in a linear ASCII form.

I 3. The Ada Interface to the Internal Representation

The interface to the Ada 1Rer tree is provided by three packages: AdaTran_Records,
PrimitiveNodeCreation, a ?rimitiveAdaTranInterface. The package
AdaT n_Records contains the definition of IRep tree nodes and sequences; the package3 PrimitiveNodeCreation provides functions for building IRep tree nodes; and the pack-
age
Primitive_AdaTranInterface provides functions for accessing and changing the value3 of the attributes of nodes.

B
A!nhBMy19

I

I 3.1 The Package AdaTranRecords

The package AdaTranRecords contains the following definitions.

3.1.1 The Type AdaTran Node Kind

I The type AdaTranNodeKind is an enumerated type that is used to indicate the class of
any given IRep tree node. The definition is

I type AdaTranNodeKind is (kUNDEFINED,
k_EMPTY,3 -- Primitive Node Classes
k_Boolean,
k_Character,
k-Float,
k.Integer,
k-String,
k.Symbol,
- Structured Node Classes
k_ABORT,
kACCEPT,

3 kWITHELEM);

Note that the names of the various node kinds are all prefixed with 'k..' This avoids any
clashes with Ada reserved words. For example, ABORT and ACCEPT would class with
the reserved words 'abort' and 'accept' in Ada, unless we modified them somehow.

3.1.2 The Type AdaTranNode

I The type AdaTranNode corresponds to the IRep tree nodes for Ada. It is implemented as
a pointer to a record, which contains all the attribute information for the node. Thus, we3 have the definition

type AdaTranNode_Implementation(Kind : AdaTranNodeKind) is
3 record

end record;

I and the definition

i type AdaTran_Node is access AdaTran_NodeImplementation;

I

I

I 3.1.3 The Type SeqOf AdaTranNode

The type SeqOf_AdaTran_Node corresponds to sequences of AdaTran nodes. It is cre-
ated by instantiating the generic package SEQ on the type AdaTranNode. Thus, we have
the three definitions

Ipackage AdaTranNodeSeqs is new SEQ(AdaTranNode, Eq, Equal);

3 subtype SeqOf_AdaTranNode is AdaTran_Node_Seqs.Seq;
function NewSeq..OfAdaTran_Node reurn SeqOf_AdaTran_Node

renames AdaTran_NodeSeqs.NewSeq;

The generic package SEQ provides a set of routines for creating and manipulating linked
lists. Instantiating this generic package for the type AdaTranNode, makes these opera-
tions available for use on nodes. In order to use these operations on sequences of AdaTr-
anNode(s), it is necessary to insert the clause

3use AdaTranNodeSeqs;

in the declaration part of the unit that uses these routines.

The subtype Seq_Of_AdaTranNode corresponds to sequences of nodes.

3 The function NewSeqOf_AdaTranNode returns the empty sequence.

3.1.4 The Functions Eq and Equal

In dealing with a complicated structures, like AdaTran_Node(s), it is sometimes necessary
to make a distinction between equivalence and identity in comparing nodes. The function
Eq, defined by

function Eq(x, y : AdaTranNode) return Boolean;

returns true if and only if x and y are the same node. On the other hand, the function Equal,

* defined by

function Equal(x, y : AdaTranNode) return Boolean;

returns true if and only if x andy are equivalent. In this case we require that x andy be of
the same class and that all the corresponding attributes of x and y be Eq.

I 3.2 The Package PrimitiveNode.Creation

The package PrimitiveNodeCreation provides functions for constructing new nodes.
These consist of the generalized node creation functions, the functions for building primi-
tive nodes, and the functions for building structured nodes. A node, once created, can be

I stored in the node data base (a table in memory that holds AdaTran nodes with symbols as

Apk B may 1992 7

I

I the keys). The user can even specify the name under which the node should be stored. This
data base is meant to provide unique names for all nodes that are attributes of two or more
other nodes. Many of the node creation functions have a parameter called 'Label' or
'NodeLabel,' which defaults to TheSymboLUndefined. If the user does not specify a
name, the system will generate one, if necessary.

U 3.2.1 The Generalized Node Creation Functions

3 The generalized node creation functions are

function Raw_AdaTranNode(Kind: AdaTranNode_Kind)
return AdaTran-Node;

and

I function NewAdaTranNode(Kind: AdaTranNodeKind;
Label: Symbol:= TheSymbolUndefined)3 return AdaTran_Node;

I The function RawAdaTran_Node simply creates a new, uninitialized instance of an
AdaTran_Node. It will rarely be used by the programmer, however, since it is at a very
low level and requires that the programmer devote considerable attention to low-level
details.

The function NewAdaTranNode, on the other hand, will handle many of the low level
details necessary to maintain consistency in the node data base. Thus, it can be used more
effectively by the programmers of ENCORE tools. The optional parameter 'Label,' indi-
cates a name under which the node is to be stored in the node data base.

3.2.2 Functions for Building Primitive Nodes

The package PrimitiveNodeCreation provides a number of functions for building prim-
itive, or scalar, nodes, such as integers, strings, booleans, etc. Many of these functions are
overloaded, in order to allow different types of parameters. Consider, for example, the
function Make_Integer. There are three different versions

function Make-Integer(X Integer) return AdaTranNode;
function Makejnteger(X String) return AdaTrnNode;
function Make jnteger(X : AString) return AdaTran-Node;

The first MakeInteger function allows one to build a node from an x-tual integer. The
second allows one to build a node from a string that represents an int.;ger. Finally, the third

Sallows one to build a node from a pointer to a string.

The other creation functions for primitive nodes are MakeBoolean, MakeCharacter,3 MakeFloat, Make-String, and MakeSymbol.

Ai mdh B M9 3m

I

I There is also one function for building up sequences of symbol nodes. This is the function
defined by

I function MakeSeqOfSymbol(S : Seq__OfSymbol) return SeqOLAdaTranNode;

This function accepts a sequence of actual symbols and builds a sequence of nodes, each
of type kSymbol.

Functions for Building Structured Nodes

The functions for building structured nodes allow the user to build a complete node with
all the attributes in place. Some examples are

function MakeAbort(pTasks : Seq._OfAdaTranNode;
Node-Label : Symbol:= TheSymbolUndefined)

return AdaTranNode;

3 function MakeFuncSpec(pBody : AdaTranNode;
pContext: Seq_Of_AdaTranNode;
pDesignator: AdaTranNode;
pParameters : SeqOf_AdaTranNode;
pReumnType: AdaTranNode;
NodeLabel : Symbol:= The_SymbolUndefined)

return AdaTranNode;

function MakeOthers(Node_Label : Symbol:= TheSymbolUndefined)
return AdaTranNode;.

I The names of parameters that correspond to attribute values are all prefixed with 'p_.'
This avoids any clashes with Ada reserved words. For example, several classes of node
contain an attribute called 'type.' This would cause a conflict with the reserved word
'type' in Ada, unless we altered the name somehow.

S3.3 The Package PrimitiveAdaTranInterface

The package PrimitiveAdaTran_Interface provides routines for accessing and manipulat-3 ing AdaTran_Nodes.

3 3.3.1 The Function Kind

The function Kind, defined by

3 function Kind(x : AdaTran_Node) return AdaTran_Node;

I
Appmdh B may1992 9

I

allows the user to query a node as to its class. Quite often the various ENCORE tools will
use a case-statement based on the result of Kind(x), then perform different operations3 depending on the actual kind of the node.

3.3.2 Accessing Primitive Nodes

Primitive nodes can't be altered, so the only operation available is to retrieve the actual
primitive values from the nodes. For example, we can retrieve the integer value of an inte-

Sger node. The actual functions are

function As_Boolean(N : AdaTran.Node) return Boolean;
function As_Character(N : AdaTran_Node) return Character;,
function AsFloat(N : AdaTranNode) return Float;
function As_Integer(N : AdaTran_Node) return Integer;,3function AsString(N : AdaTranNode) return String;
function As_AString(N : AdaTranNode) return A_String;
function As_Symbol(N : AdaTranNode) return Symbol;

The function As.AString needs some additional comments. The type AString is an
access type whose values are pointers to strings (AString is described in the package
BasicStrings). With string nodes, it is important to be able to view the string value of a
string node as either an actual string or as a pointer to a string. This is because the type
String in Ada is an unconstrained array type, which is inconvenient to use in some con-
texts.

Finally, there is a function defined by

function As_SeqOfSymbol(S : SeqOfAdaTranNode)
return SeqOfAdaTranNode;

This function takes a sequence of AdaTran_Node(s), all presumed to be of type
kSymbol, and returns a sequence of Symbols. As such, it is the reverse of the function
MakeSeqOfSymbol, defined in the package PrimitiveNodeCreation.

3 3.3.3 Accessing Structure Nodes

For each attribute name, there are two corresponding functions, a 'Get_' function and a
'Set_' function. The Get function retrieves the -Ttribute of the given name, while the Set
function assigns a value to the attribute. Two examples are

GetType(N AdaTranNode) return AdaTranNode;
SeLType(N AdaTranNode; To_Be AdaTranNode);

* and
GeLDeclarations(N AdaTranNode) return SeqOf_AdaTran_Node;

SetDeclarations(N AdaTranNode; ToBe : Seq_Of_AdaTran_Node);

Am&d B may 1992 to

I

I The first two functions provide access to the 'type' attribute of any typed node, such as a
vardecl, const-decl, etc.

I The last two functions provide access to the 'declarations' attribute for any node corre-
sponding to a scope. These include nodes of class pkg-spec, pkg-bdy, block, etc.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

iAp.ndi B Mq1 992

I
I Appendix C

U ADL Description of the Ada Intemnal

* Representation

I
I
U
I
U
I
I
I
I
I
I
I
I
I
I

I -- ADL Description of the Ada Internal Representation

I module AdaTran is

-Primitive Node Types

primitive Boolean;
primitive Character,
primitive Float;
primitive Integer,
primitive String;

primitive Symbol;

stub Empty;
stub Undefined;

3 -- Structured Classes

3 -- 2.8 pragmas

pragma =>
* designator: Symbol,
U parameters : seq of EXPORASSOCIATION;

I EXP_-ORASSOCIATION ::= EXP I association;

-3. declarations and types

-3.1 declarations

I DCL:: pagm Ius~eemMULTIPLEDESIGNATORSITEM I REP I SINGLE_-DESIGNATORITEM;

I -- 3.2 objects and named numbers

3 MULTILEDESIGNATORSITM::= num-dec11I var-dec11I consLdecl;

EXPOREMPTY::= EXP I Empty;

I SUBTYPEINDICATION := constrained-reference REFERENCE;

numn_dccl =>
designators : seq of Symbol,
initial-value : EXP_-OREMPYl
referencers; seq of named-ref,

AppendbtC may 1992

I

I type SUBTYPE_INDICATION;

var_decl =>
constraints seq of CONSTRAINT,
designators : seq of Symbol,
initialvalue: EXP_OR_EM TY
referencers : seq of namedref,
type : SUBTYPENDICATION;

I const_dcl =>
constraints seq of CONSTRAINT,
designators seq of Symbol,
initialvalue: EXPOREMPTY,
referencers : seq of namedcref,
type :SUBTYPEINDICATION;

-- 3.3 types and subtypes

-- 3.3.1 type declarations

I SINGLEDESIGNATOR_ITEM::= type_decl I subtypedecl;

type_decl =>
designator: Symbol,
info : TYPEINFO,
referencer : directref;

-- 3.3.2 subtype declarations

subtype.decl =>
base-type SUBTYPE_INDICATION,
constraints : seq of CONSTRAINT,
designator : Symbol,
referencer direcLref;

I -- 3.4 derived type defintions

3 TYPE_INFO ::= derivedjtype-info;

derivedt.ypeinfo =>
basejtype : SUBTYPE_INDICATION,
constraints: seq of CONSTRAINT,

I

I -- 3.5 scalar types

TYPENFO:: enumeratedjtypejnfo;

enumnerated_typejinfo =>
values: seq of enumeration-literal;

enumnerationjliteral =>f basejtype: SUBTYPE_-INDICATION,
type :directjef,
value :SYMBOL,_ORCHARACTER;

SYMBOL_-ORCHARACTER ::= Symbol I Character,

I -. 3.5.4 integer types

TYPEINFO ::= integerj-ype-info;

integer-typeinfo =>p range : SIMPLERANGE;

-3.5.9 real types

I TYPEINFO :: REAL,_TYPE_INFO;

REAL_,TYPEINFO ::= float-type-info;
floaLtype-info =>

digits : EXP,
range : SI]MPLERANGE_ORE]MPTY,

REAL_,.TYPEINFO ::= fixed r-ype-info;
fixeittype-info =>

delta : EXP,
range : SIMPLE_RANGE _OREMPTY;

SIMWPLERANGEOREMPfTY ::= SIMPLERANGE I Empty;

3 -- 3.6 array types

TYPE_INFO ::= array..sypejnfo;

array .jype-info =>
base..type: SUBTYPEINDICATION,

ranges : seq of RANGE;3 RANGE ::= discrete_range;

Apoif C May 199 3

SIMPLERANGE:: discrete-range;

discrete-range =>
base-type: SUBTYPEINIDICATION,
max EP3 min :EXPh,

RANGE ::= indexsconstraint;

I index-constraint =>
base-type: SUBTYPEINDICATION,
max :EXIR

min EXP;

R RANGE:: universalindex-range;

universal_index..range =>3 base-type: SUBTYPEINDICATION,
max :EXP,
min :EXP;

I RANGE ::= universal~ntegerj-ange;

universaljintegerjange =>
basej-ype: SUBTYPEINDICATION,
max EXP

min : EP;ftRANGE:: REFERENCE,

-3.7 record types

I TYPEINFO ::= record-typeinfo;

recorc-type-info =>
components :seq of componentjiecl,
discriminant : seq of componentLdecl;

I MULT1IEDESIGNATORS_ITM: componentdecl;
COMPONENT ::= componentdecl I pragma;

£ cotnponent-ecl =
constraints :seq of CONSTRAINT,
designators seq of Symbol,
initial-value : EXP _OREMPTY,
referencers :seq of named~ref,atype SUBTYPEINDICATION;

Appmndi C May 199 4

U

COMPONENT::= null_component;

I null_component =>;

COMPONENT::= variant-part;
variant-part =>
discriminator: named_ref,3variants : seq of variant;

variant =>
choices : seq of CHOICEOROTHERS,
components: seq of COMPONENT;

3 CHOICE_OROTHERS ::= EXP I GENERAL_DISCRETERANGE I others;

others =>;

-- 3.8 access types

! TYPEINFO ::= pointertypejnfo;

pointertypejnfo =>
basetype: SUBTYPEINDICATION;

-- 3.8.1 Incomplete Type Declarations

TYPEINFO ::= TYPESTUB;

I TYPESTUB ::= incomplete-type-info;

incomplete-typeinfo =>
completion : DIRECT_REF_OREMPTY,
discriminant : seq of componentdecl;

TYPESTUB ::= private-typeinfo;

private-typejnfo =>
completion : DIRECT_REF_OREMPTY,

i3 discriminant : seq of component-decl;

TYPE_STUB ::= linited-private-typeinfo;

limitedprivate-type-info =>
completion : DIRECT_REF_OREMPTY,5 discriminant : seq of componentdecl;

3 ApWC M" 992 5

I

TYPEINFO ::= type-completioninfo;
typeompletioninfo =>

info : TYPEINFO,stub : DIRECTREFOREMPTY

I DIRECTREF_OREMPTY ::= direct_ref I Empty;

g-- 3.9 declarative parts

1 -- 4 names and expressions

-- 4.1 names

S-- 4.1.1 indexed components

3 REFERENCE::= indexed-ref;
indexed_ref =>

indices : seq of EXP,
representations : seq of REP,
target : EXP;

3 -- 4.1.2 slices

slice =>
range : GENERAL_DISCRETE_RANGE,
target: EXP;

I GENERALDISCRETE_RANGE ::= constrained_reference I REFERENCE I SIM-
PLE_RANGE;

S-- 4.1.3 selected components

3 REFERENCE ::= component-ref;

component_ref =>
component : EXP,
representations: seq of REP,
target : EXP;

-- 4.1.4 attributes

I SIMPLE_RANGE ::= attribute;

5 attribute =>

Appeadj C May 1992 6

I

£ designator: Symbol,
exp : EXP;

I SIMPLE_RANGE ::= attribute call;

attributecall =>
attribute : attribute,
exp : EXP;

I -- 4.2 literals

5 EXP ::= LITERAL;

LITERAL := Boolean I Integer I Float I Symbol I Character I String;

-- 4.3 aggregates

£ LITERAL ::= aggregate;
aggregate =>5 components: seq of ACTUALCOMPONENT;

ACTUALCOMPONENT ::= association I otherspart I EXP;

I others-part =>
exp : EXP;

S-- 4.4 expressions

EXP ::= REFERENCE;

-- 4.4.B relations

EXP ::= membership;

membership =>
exp : EXP,
op -MEMBERSHIP_ OP
set : discreterange;

i5 MEMBERSHIP_OP ::= inop I not-in;

inop =>;£ notin =>;

-- 4.5 operators and expression evaluation

Appndhi C May 1992 7

£ -- See Function Calls

3 -- 4.6 type conversions

EXP ::= QUALCONV;,ftQUALCONV :=conversion;

conversion =>I exp :EXP,
type: SUBTYPEINDICATION;

-4.7 qualified expressions

3 QUAL_-CONV ::= qualified-expression;

qualifiec-expression =>
exp :EXP,
type : SUBTYPE_INICATION;

I -- 4.8 allocators

EXP ::=ALLOCATOR;
ALLOCATOR ::= uninitialized_,allocator,

uninitialized_allocator =>
constraints: seq of CONSTRAINT,
object-type : SUBTYPE_-INDICATION,

£type : SUBTYPEINDICATION;

ALLOCATOR ::= initialized_allocator,

initialized-allocator =>
constraints: seq of CONSTRAINT,
expr :qualified-expression,
type : SUBTYPE_ INDICATION;

EXP ::= null-exp;

g null_exp =>;

-- 5 Statements

I STMT ::= pragma;
STMT ::= labeled-stnn;

Appendix C may 192

I labeled-stint =>
labels :seq of Symbol,
referencers : seq of narnedjref,
statement :STMT;

5 STMT :=nullstnt;

nullstint => ;

£ -- 5.2 assignment statement

STMT ::= assignment stint;

assignment~stit =>I target: REFERENCE,
source : EXP;

I -- 5.3 if statements

STMT ::= if-stint;
if-stint =>

then_part : then~clause,3 else-parts : ELSESOREMPTY;

then_clause =>
cond : EXP,

statements: seq of STMT;

I ELSES_OR_EMMT ::= elses_part I Empty;

elses -part =>
else_part : ELSE_CLAUSE_OR_EMPlT

elsifs : seq of elsifl_clause;

I elsif clause =>
cond : EXP,
statements : seq of STMT,

ELSE_CLAUSEOREMIPTY ::= else-clause I Empty;

5 else_clause =>

statements: seq of STMT;

I -. 5.4 case statements

STMT ::= casesnt;

gAppmdix C May 199 9

casestint =>3 alternatives : seq of altern,
case-e..xp : EXP,

altern =>
choices : seq of CHOICEOROTHERS,
statements: seq of STMT;

£ -- 5.5 loop statements

STMT:: loop-stmt;

loop-stmt =>
iterator : IERATOR,
label :Symbol,

3statements :seq of STMT;-

5 ITERATOR ::= while iter

whileiter =>3 condition : EXP;

ITERATOR :=forjter,

I forjter =>
mnit-and-end: GENERALDISCRETERANGE,
referencers :seq of namedjef,

variable :Symbol;

1TERATOR :=reverse iter

reverseiter =>
mnit_and_end: GENERALDISCRETE_RANGE,
referencers :seq of named-ref,
variable : Symbol;

-5.6 block statements

3 STMT:: block;

block =>3 declarations :seq of DECL,
exception-..handler: seq of altern,
label :Symbol,

gAppwfdi C may 199 10

Ireferencer direct-ref.
statements seq of STMT,

U -- 5.7 exit-statements

$ STMT ::= exit-sunt;

exitmhi =>
level :REFERENCEOREMPTY,
when-condition :EXP_-OREMPY;

REFERENCE_-OREMPTY ::= REFERENCE I Empty;

-5.8 return statements

STMT:: returnstnt;
return-stnt =>

value: EXPOREMPTY;,

I -- 5.9 goto statements

STMT:: goto...stnn;
gotostmt =>

target: REFERENCE;

-6 subprograms

£ -- 6.1 subprogram declarations

SINGL.EDESIGNATORriTEM ::= func-.spec;

func-spec =>
body :DIRECTREFOREMPT,
context :seq of CONTEXTELEM,I designator :Symbol,
parameters :seq of FORMAL,
referencer :direct..ref,

return-type : direct-jef,3 SINGLEDESIGNATORITM::= proc-spec;

proc-spe =>
body :DIRECTREFOREMNT,
context :seq of CONTEXTELEM,
designator: Symbol,
parameters: seq of FORMAL,

Ap~pwmd C May 199

3 referencer :directjref;

I -- 6.1.C formal part
FORMAL:: injformal. I out~formal I inout-formal;

in-formal =>
designators : seq of Symbol,
initialvalue: EXPOREMPTY,
referencers : seq of namedjef,
type : SUBTYPEINDICATION;

S FORMAL ::= outjormal;
out-formal =>3 designators: seq of Symbol,
referencers: seq of namedjef,
type : SUBTYPE-lNDICATION;

FORMAL ::= inout~formal;
GENERICPARAMETER::= inout-formal;3 inout~formal =>
designators: seq of Symbol,
referencers; : seq of narnedref,

type : SUBTYPE_-INDICATION;p -- 6.3 subprogram bodies

SINGLEDESIGNATORITEM ::= func-bdy;

I func_bdy=
context :seq of CONTEXTELEM,
declarations :seq of DECL,
designator :Symbol,
exception-handler: seq of altern,3parameters : seq of FORMAL,
referencer :direct~ref,
return-..type :direct~ref,
Spec : DIRECT_-REFOR_EMPTh,
statements; : seq of STMT;

3 SINGLEDESIGNATOR-riTM::= proc..bdy;

proc..bdy =>

context :seq of CONTEXTEL EM,
declarations :seq of DECL,
designator :Symbol,

Apwdh C buy 199 12

exceptionhandler: seq of altern,
parameters : seq of FORMAL,
referencer : directref,
spec : DIRECTREFOREMPTY,
statements : seq of STMT;

-- 6.4 subprogram calls

STMT ::= proc-call;

procpall =>
parameters: seq of EXP_ORASSOCIATION,
proc :REFERENCE;

EXP ::= function-pall;

functioncall =>
function : REFERENCE,
parameters: seq of EXPORASSOCIATION;

-- 7 packages

-- 7.1 package structure

5SINGLE_DESIGNATORITEM ::= pkg-spec;

pkgspec =>
body : DIRECTREFOREMPTY,
context : seq of CONTEXTELEM,
declarations : seq of DECL,
designator Symbol,
private-declarations : seq of DECL,
referencer : direct_ref;

SINGLEDESIGNATORITEM ::= pkgjbdy;

5 pkg-bdy =>
context : seq of CONTEXTELEM,
declarations : seq of DECL,
designator : Symbol,
exceptionhandler: seq of altern,
referencer : direct_ref,
spec : DIRECIREFOREMPTY,
statements seq of STMT;

Appmfix C May 1992 13

S -- 7.4 private type and deferred constant declarations

5 MULTIPLEDIESIGNATORSJTrEM ::= deferred-cons-lecl;

deferred-const-dccl, =>
decl :const..decl,
designators: seq of Symbol,
referencers : seq of named-ref,5 type :SUBTYPEINDICATION;

-8 visibility rules

-8.4 use clauses

3DECL ::= use-elem;
CONTEXTELEM ::= use-elem;

I use-jelem =>
items : seq of Symbol;

I -8.5Srenaming declarations

5 MULTIPLE_-DESIGNATORSITM :: exception-yenamv;

exception-rename =>
designators: seq of Symbol,
item : REFERENCE;

3 SINGLE-DESIGNATORITM::= func-rename;

funcprename =>
designator : Symbol,
item : REFERENCE,
parameters : seq of FORMAL,
referencer : directrjef,
return-type : directjref;

3 MULTIPLEDESIGNATORS-iTMM::= object-rename;

object_rename =>
designators: seq of Symbol,

item : REFERENCE;

U SINGLEDESIGNATORITM::= pkgsrename;

3 pkgjrename =>

Appandi C may 199 14

designator: Symbol,
item : REFERENCE,
referencer : direct.tefl;

SINGLEDESIGNATORITEM ::= proc-rename;

proc-rename =>
designator: Symbol,
item : REFERENCE,
parameters : seq of FORMAL,
referencer : direct-ref;

-- 9 tasks

-- 9.1 task specifications and task bodies

SINGLE_DESIGNATORITEM ::= task-typeJlecl;

task_typejdecl =>
designator: Symbol,
referencer : directref,
spec : DIRECT_REF_OR_EMPTY;

SINGLEDESIGNATORITEM ::= task-spec;
TYPEINFO ::= task&spec;
taskspec =>

body : DIRECTREFOREMPTY,
context : seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator Symbol,
referencer : direct-ref;

SINGLEDESIGNATORITEM ::= taskbdy;

task bdy =>
context : seq of CONTEXTELEM,
declarations : seq of DECL,
designator Symbol,
exception-handler : seq of altem,
referencer : directref,
spec DIRECTREFOREMPTY,3 statements : seq of STMI',

-- 9.5 entries, entry calls and accept statements

£ A C May 1992 15

SINGLEDESIGNATORITEM::= entry;

entry =>
designator: Symbol,
parameters: seq of FORMAL,
range : RANGEOREMPI,
referencer : directref;

RANGEOREMPTY ::= RANGE I Empty;

entry-call =>
entry : directref,
index : EXP_OREMITY,
parameters: seq of EXPORASSOCIATION;

STMT ::= accept;
accept =>

entry : REFERENCE,
index : EXP_OR_EMPTY,
parameters: seq of FORMAL,
referencer : directref,
statements : seq of STMT;

-- 9.6 delay statements, duration and time

delay =>
exp : EXP;

3 -- 9.7 select statements

-- 9.7.1 selective waits

select =>
selectclauses: seq of SELECTCLAUSEELEM,
statements : seq of STMT,

SELECT_CLAUSEELEM ::= pragma I selecLclause;

selecLclause =>
cond : EXP,
statements: seq of STMT;

STMT ::= terminate;

terminate => ;

Appmdix C May 1992 16

I -- 9.7.2 conditional entry calls

3STMT:: ENTRY-STMT;

ENTRYSTMT ::= cond~entry;

S condentry =>
failure-statements :seq of STMT,5 success,-statements :seq of STMT,

-9.7.3 timed entry calls

ENTRY_-STMT ::= timedentry;

5 timedentry =>
failure-statements : seq of STMT,3 success-statements : seq of STMT;

-9.10 abort statements

I STMT ::= abort;

abort =>II tasks: seq of REFERENCE;

:3 -- 10 program structure and compilation issues

-10.1 compilation units - library units

UNITDECL ::= GENERICINSTANTIATION ACTUAL_-SPEC ACTUAL-BODY;

5ACTUAL_,SPEC::
func-spec I
func-instantiation II generic-func-spec I
generic..pkg..spec I
generc...proc-spec I5 pkg-spec I
pkgjinstantiation I1 pkg-spec I
proc-spec I
proc-instantiation I3 taskspec;

ACTU-IAL_,BODY::3 func-bdylI

Apmdix C May 199 17

I func-imstantiaion.bdy I
generic func-bdy I3 generic-pkgixdl
geneic-proc..bdy I
pkg-bdy I3 pkgjstantiationixly I
proc...bdylI
proc-instantiatioiubdy I3 task~bdy;

CONTEXTELEM :=with-elem;3 --CONTEXTELEM :=use-elem;

with_elem =>3 items: seq of Symbol;

-10.2 subunits of compilation units

SINGLED-TESIGNATOR-rTEM ::= stub;

stub =>
designator: Symbol,
referencer : directjef,
spec : DIRECT_REF _OREMPTY,
subunit : DIRECTREFOREMPTY

SINGLE-DESIGNATOR.ITEM ::= subunit;

subunit =>
body : DIRECTREFOR_EMYIY,
designator: Symbol,
referencer : direct..yef,
spec :DIRECT_RE_OREF1YY
stub :DIRECT_REF_OR_EMPTY

-11 exceptions

-11.1lexception declarations

MULTIPLEDESIGNATORSITM::= exception-deci;

exceptionjdeci =>
designators: seq of Symbol,

referencers : seq of naxnec~ef;

Appodai C may 199 is

I -- 11.2 exception handlers

-11.3 raise statements

3STMT:: raise -strnw

raise-stint =>£ exception: named__ef;

g -- 12 generic program units

GENERIC_-UNIT: generic-func-spec I generic-proc.spec I
generic-funcjbdy I generic..proc..by I

generic.pkg..spec;3 GENERICPARANMR::= genenic-ype..paramn I
in-formal I
inout-formal I5 GENERICSUBPROGRAMPARAM;

SINGLEDESIGNATORITEM:: generic-ype-.param;

generic-ype-.paramn =>
designator: Symbol,
info :GENERICTYPEINFO,
referencer : directzjef;

5 GENERICTYPEINFO ::= generic-discrete-info I genericjntegerinfo I
generic-float-info I generic-fixed-info I

generic discretejinfo =>;TPJNO

genericjntegerjnfo =>;
generic float-info =>;
generic -fixed -info =>;

I GENERICSUBPROGRAMPARAM ::= generic-func-param I genezic-proc-param;

genericjunc-pamam =>
default-subprogramn: SYMBOL_, BOXSUBPROGRAMOREMPITh
designator : Symbol,

parmeters, seq of FORMAL,
referencer directuef,
return jype :directf;

AWpudnC may 199 19

Ig enrcproc-param =
defaulLsubprogram: SYMBOL_,BOXSUBPROGRAMOREMPTY,
designator Symbol,
parameters seq of FORMAL,
referencer directuef;

3SYMBOL_,BOXSUBPROGRAMOREMPTrY: boxsubpwgram I Empty I Sym-

bol;

'I box-subprogram =>;

5 SINGLEDESIGNATOR-iTEM:: genericjimc.spec;

genericjfunc.spec =>5body :DIRECTREF_-OREMPTY,
context :seq of CONTEXT_-ELEM,
designator :Symbol,3 g...parameters : seq of GENERICPARAMETER,
parameters :seq of FORMAL,
referencer :direct..ref,5 return.type :direc~ref;

ISINGL.E_DESIGNATORITM: generic~procspec;

generic..proc-spec =>
body DIRECTREFOREMPTY,Icontext seq of CONTEXT _ELEM,
designator :Symbol,
gparameters :seq of GENERIC _PARAMETER,
parameters :seq of FORMAL,
referencer :direct-r.ef;

3SINGLEDESIGNATIORIT1EM ::= geneic-pkg-spec;

generic-pkg-spec =>
body DIRECTREFOREMPTY,
context seq of CONTEXTELEM,
declarations seq of DECL,
designator Symbol,
¶meters : seq of GENERIC_-PARAMETER,
private-declarations : seq of DECL,
referencer : direct-ref;

SINGLEDESIGNATORITM::= generic-funcjxiy;

5 generic func-bdy =>

Appendix C may 199 20

I context :seq of CONTEXT_-ELEM,
declarations :seq of DECL,
designator Symbol,
exception-handler : seq of altern,
g-paranleters : seq of GENERICPARAMETER,
parameters :seq of FORMAL,U referencer :direct-ref.
return-ype : directuef,
spec :DIRECT_-REF_-OREMPTY,

statements : seq of STMT;

3 SINGL.EDESIGNATORITEM := geneic-proc..by;

geneic-procbdy =>
context : seq of CONTEXTELEM,
declarations :seq of DECL,
designator :Symbol,3 exception-handler : seq of altemn,
g-parameters :seq of GENERICPARAMETER,
parameters :seq of FORMAL,£ referencer :direct-ref,
spec :DIRECTREFOREMPYf,
statements : seq of STMT;

SINGLE_-DESIGNATORITEM[::= geneic-pkg.bdy;

3 generic-pkg.bdy =>
context :seq of CONTEXTELEM,
declarations :seq of DECL,I designator :Symbol,
exception-handler: seq of altemn,
referencer : direct-ref.
spec :DIRECTREFOREMPTY,
statements : seq of STMT;

I -123 generic instantiation

3 GENERICACTUAL_,,PARAMETER := EXP; -- for now

SINGLE_-DESIGNATOR-lTM: func -instantiation;3 GENERICINSTANTIATION ::= func_instantiation;

func-instantiation =>3body : DIRECTREFOREMPTY,
context seq of CONTEXTELEM,

* designator :Symbol,

Appendix C May 1992 21

S g..actuals :seq of GENERICACTUALPARAMETER,
instance-of : REFERENCE,
parameters : seq of FORMAL,
referencer : directjef,
returnjype : directLref,3spec : DIRECTREF_-OR_EMPTY;

SINGLEDESIGNAT OR_ITEM ::= procminstantiation;3 GENERICINSTANTIATION ::= procinstantiation;

proc-instantiation =>
body : DIRECT_REF _OR_EMPTY,
context seq of CONTEXTELEM,
designator :Symbol,
g-actuals :seq of GENERIC_ACTUALPARAMETER,
instance_of: REFERENCE,
parameters :seq of FORMAL,
referencer : direct..yef,
spec : DIRECT _REF _OREMPTqY

5 SINGL.EDESIGNATORITEM ::= pkgjinstantiation;
GENERICINSTANTIATION ::= pkgjinstantiation;

3 pkgjinstantiation =>
body :DIRECT_-REFOREMPT7Y,
context :seq of CONTEXT _ELEM,
designator :Symbol,
g-actuals :seq of GENERIC _ACTUALPARAMETER,
instance-of: REFERENCE,
referencer : direct..ref.
spec : DIRECT _REF_OREMPTY;

S SINGLEDESIGNATORITEM ::= func-instantiation..bdy;
GENERICINSTANTIATION ::= func-instantiation-bdy;
func-instantiation..bdy =>

context :seq of CONTEXT-ELEM,
declarations :seq of DECL,
designator :Symbol,
exception-..handler : seq of altemn,
g..ctuals : seq of GENERICACTUAL_,PARAMETER,3 instance_of : REFERENCE,
referencer : direct-ref.
spec :DIRECT _REFOR..EMPTY3statements : seq of STMT;

SINGLEDESIGNATORITM::= promnstantiationjbdy;II GENERICINSTANTIATION ::= proc-instantiation bdy;

Appmdix C May 199 22

U

proc-instantiationbdy =>
context seq of CONTEXTELEM,
declarations seq of DECL,
designator Symbol,
exceptionhandler: seq of altern,
g..actuals : seq of GENERICACTUALPARAMETER,
instance_of : REFERENCE,
referencer : directref,
spec : DIRECTREFOR_EMPTY,
statements : seq of STMT;

i1 SINGLE_DESIGNATOR_ITEM ::= pkgjnstantiation bdy;
GENERICINSTANTIATION ::= pkg.instantiation_bdy;

pkgjinstantiation-bdy =>
context • seq of CONTEXT_ELEM,
declarations : seq of DECL,
designator • Symbol,
exception-handler : seq of altem,
g-actuals : seq of GENERICACTUALPARAMETER,
instanceof : REFERENCE,
referencer : direct-ref,
spec : DIRECTREFOREMPT,
statements : seq of STMT;

i -- 13 representation clauses and implementation dependent features

3 -- 13.1 representation clauses

REP::= recordrep I EXP_RE ,

type-attribute =>
designator : Symbol,
representations: seq of REP,
type : directref;

3i (ADL EXPREP => exp EXP)

(ADL EXPREP := addressjrep length clause enumerationjep)-- 13.3

-- 13.2 length clauses

EXPREP ::= lengthclause;
lengthclause =>

exp : EXP, -- exp is a simple expression

App ix C May 992 23

I

I target: REFERENCEORTYPEATrRIBUTE;

5 -- 13.3 enumeration representation clauses

EXPREP ::= enumeration-rep;
enumeration-rep =>

exp : EXP, -- exp is an aggregate
target: REFERENCEORTYPEATTRIBUTE;

-- 13.4 record representation clauses

3ALIGNMENT_OREMPTY ::= alignment I Empty;
alignment =>
atmod : EXPOREMPTY,
pragmas : seq of pragma;

REP ::= record_rep;
recordrep =>

alignment : ALIGNMENT_OREMPTY,
component-reps: seq of COMPONENTREPELEMENT,
target : REFERENCEORTYPEATIRIBUTE;

COMPONENTREPELEMENT ::= component-rep I pragma;

component-rep =>
atexp :EXP,
designator: Symbol,
range : RANGE;

I -- 13.5 address clauses

EXPREP ::= addressjrep;
address-rep =>

exp : EXP,
target: REFERENCEORTYPE_AlTRIBUTE;

REFERENCE_OR_TYPEATRIBUTE ::= REFERENCE I type-attribute;

type..,attribute =>
designator : Symbol,
representations : seq of REP,
type : direct-ref;

I -- 13.8 machine code insertions

3 machinecode =>

Appendix C Mby 1992 24

U

S exp : EXP,
type: REFERENCE;

3 -- 14 input-output

X.1 Constraints

CONSTRAINT::= RANGECONSTRAINT I array-Ponstraint I Empty;
RANGE_CONSTRAINT ::= EXP I RANGE;

array-constraint =>
element_constraints: seq of CONSTRAINT,
range_constraints : seq of RANGE;

3 -- X.1 References

REFERENCE ::= direct_ref named_ref indexed_ref
component_ref objectref pointerderef)

3 REFERENCE ::= directref;

direct_ref =>
representations: seq of REP,
target : DECL_ORSTMT; -- points to single decls

5DECL_ORSTMT ::= DECL I STMT;

REFERENCE ::= object_ref;

objectref =>
representations: seq of REP,
target : EXP;

REFERENCE ::= named-ref;

named_ref =>
designator : Symbol,
representations: seq of REP,
target : REFERENCE;

S REFERENCE ::= pointerfderef;

pointer_deref => -- the ".all" construct
representations: seq of REP,
target : REFERENCE;

C
iAppendix C May 1992 2

5
5 EXP_OR_ASSOCIATION ::= association;

ACTUAL_COMPONENT ::= association;
association =>
names: seq of EXP,
value : EXP;

I GENERALDISCRETE_RANGE ::= constrained_reference;
SUBTYPEINDICATION ::= constrainedreference;

U constrainedreference =>
constraint : CONSTRAINT,3 target : REFERENCE;

unconstrained =>
basetype: SUBTYPEINDICATION;

end module;

I

I
I
U
I
U
I
U
U

Apeni C My 1992 26

U
* AppendixD

Introduction to ENCORE Symbol Table
U
I
I
3
U
I
I
I
I
I
U
I
U
I
I
I

I Introduction to the ENCORE Symbol Table

3 1. The Purpose of the ENCORE Symbol Table

The purpose of the ENCORE Symbol Table is to allow the various tools in ENCORE to
access definitions in Ada programs within the context of particular scopes.

Some goals in the symbol table design were:

1. The symbol table should be incrementally updatable. One should be able to add,
remove, or replace symbol table entries at any time, not just when the program is being3 read in initially.

2. From any point in any scope of the program, the symbol table should appear logically
the same as if one were processing the Ada code at that point in the program.

3. Any tool that works on the IRep should be able to access the symbol table.

4. More than one tool should be able to access the symbol table simultaneously, even
within multiple scopes.

3 1.1 Basic Definitions

Symbol tables are used to store information that can be referenced from more than one
point in a program. Each item of information in a symbol table consists of two parts, a
'key,' which gives a name to the item, and a 'value,' which gives the actual information.
Adding the item with key 'k' and value 'v' to a symbol table is called storing the value 'v'5 under the key 'k.'

Some of symbol table terminology has been used with slightly different meanings in the
current literature. This report will adopt the following meanings for the common symbol
table terms.

1. The phrase 'the symbol table' means the entire symbol table structure associated with a3particular Ada program.

2. The non-specific term 'symbol table' will denote a table of key/value pairs. The keys
will correspond to identifiers or characters in Ada, while the values will correspond to
definitions in Ada. For flexibility in modifying Ada programs, the values will be refer-
ences (nodes of type kDIRECT_REF or k_NAMEDREF) rather than actual defini-5tions.

3. The term 'scope' will mean a symbol table associated with a segment of a particular
Ada program unit. Thus, a scope could hold information about a specification, a private
part, or a body.

4. A 'search' is an object that is used for accessing symbol tables. A search object
includes all the local and nesting information necessary for searching through the sym-
bol table for an Ada program.

3 5. The 'base table' of a search objct indicates the scope in which searching will start.

Appnd D Mty 1992

U

16. Since there can be several entries with the same key in the symbol table for an Ada pro-
gram, it is necessary to keep track of which entries have been found and which are left3to search. The 'search cursor' keeps track of this information.

7. One is said to be 'in' a particular scope if the base table of the search object corre-
sponds to that particular scope.

1.2 A Simplified View of the Symbol Table

3 The various symbol table packages offer the programmer a great deal of power and flexi-
bility; however, most programmers of ENCORE tools will only be interested in a rela-
tively small set of operations. These include:

- determining the current scope,

* creating a new scope within a given scope,

* entering a previously created scope,

* leaving a given scope (returning to the parent scope),

* entering the scope associated with a given declaration,

* retrieving the local entry (or entries) associated with a given key in a given scope, and3 retrieving the entry (or entries) associated with a given key, visible in the given scope
(i.e., those entries that are either in the local scope, in any of the parent scopes, or made3 visible via 'with' or 'use' clauses).

* adding an entry to a given scope,

5• removing an entry from a given scope,

* replacing an entry in a given scope with another entry,

These operations are provided in the package ParserSymbolTable. The next sections
discuss them in more detail.I

3 1.3 Determining the Current Scope

The routine

3function CurrentScope return SymbolTable;

3 returns the current table under consideration.

1.4 Creating a New Scope

I To create a new scope, the programmer invokes the following routine:

5 procedure NewScope(name);

Appmdix D May 1992 2

U

U where 'name' is the name of the Ada program unit with which the new scope is to be asso-
ciated. This procedure creates a symbol table with the given name and assigns the current
scope as the parent table of the new table. It then enters the newly created scope. For
example, suppose procedure P contains a subprocedure P1, Suppose one is currently in the
scope of P. In order to create the symbol table for P1, one would call NewScope with the
designator of P1 as the parameter. This would create a symbol table for P1, the would
place the search cursor in the scope of this new table.

15 Changing the Current Scope

In addition to the NewScope routine, there are three routines for entering a previously
defined scope. These are

procedure EnterScope(k);
procedure Leave-Scope;
procedure EnterAssociatedScope(n);

U The procedure Enter-Scope is used for entering a previously defined subscope of the cur-
rent scope. In this procedure 'k' is the name of the scope being entered. This routine sim-I ply enters the given scope.

The procedure LeaveScope simply enters the parent scope of the current scope; thus, a
call to Enter_Scope, followed by a call to Leave-Scope, will result in the current scope
being the original scope.

3The procedure EnterAssociatedScope is used for entering the scope associated with a
given Ada program unit. The parameter 'n' is not a symbol key but, rather, an AdaTran
node that corresponds to a particular Ada program unit. The function EnterAssociated_-
Scope allows the user to go directly to a given scope, without having to go up and down a
tree of nested scopes. One example where this is important is searching through the 'used'
units of a given scope.

For example, suppose one wishes to enter the scope of a particular compilation unit. The
parameter 'n' corresponds to the unit with which the scope is associated.

1.6 Retrieving Symbol Table Entries

3 Logically, retrieval of symbol table entries should follow the visibility rules of Ada. This
means that the retrieval process generally should first search through the local scope, then
the parent scopes (in order), the through the 'with'-ed units, then through the scopes of the
'used'-units. Furthermore, there are times when a tool may wish to look just at entries in
the local segment of the current unit (for example just in the 'body', the 'private' part, or
the 'specification'). At other times a given tool may be interested in searching through all
parts of the current scope but not in searching through any of the parent scopes.

Appmdix D may I992

In Ada there can be more than one declaration with a given key visible at a given point in
the program. This is the case, for example, with overloaded subprograms. In order to deal
with multiple visible declarations with the same name, we have introduced the notion of a
'search cursor' that keeps track of the current position in a particular search through a
symbol table. Most of the retrieval routines will have both a 'First_' and a 'Next_' ver-
sion. The function whose name starts with 'First_' will find the first definition correspond-
ing to a given key, starting with the given table. The function whose name starts with
'Next_' will find the first definitions corresponding to the given key, past the cursor posi-
tion of the last retrieval.

One final note. The functions for retrieving entries all use the parameter 'k,' which repre-
sents the search key. The type of 'k' has not been specified. This is because these functions
are all overloaded with respect to 'k,' with 'k' being an AdaTran_Node in the one case and
'k' being a Symbol in the other case. In the case where 'k' is an AdaTan_Node, 'k' must
be of type kSymbol or kCharacter. This is to allow enumeration literals, some of which
can be characters, to be entered in the symbol table. Since most keys will be symbols, and
since many tools will deal exclusively with keys that are symbols, it is useful to overload
the retrieval functions to allow symbols themselves, rather than just symbol nodes, as
keys.

1.7 The General Search Process

The general search process is to search for all visible definitions corresponding to a given
key. This facility is provided by the functions

function Get_First_Entry(k) return AdaTranNode;
function GeLNextEntry(k) return AdaTran-Node;

The function Get_FirstEntry finds the first entry with key 'k' visible in the current scope,
while GetNextEntry finds the first visibie entry with the given key past the current
search cursor position. The functions Get_FirstEntry and GetNext.Entry will both
search through all definitions visible from the given table, whether in the local scope, par-
ent scopes, 'with'-ed units, or 'used'-units.

1.8 The Local Search Process

To search locally in a given scope segment, such as a specification, a body, or a private
part, one uses the functions.

function Get_First_LocalEntry(k) return AdaTran_Node.
function GetNextLocalEntry(k) return AdaTranNode.

These work similarly to GetFirst_Entry and Get_NextEntry, except that the search
never goes beyond the current segment.

Awmdiz D May 1992 4

U

3 1.9 The Unit Search Process

There are times when the user wishes to limit searching to the various segments of an Ada
unit. For example, one might begin a search in the body of a package and be only inter-
ested in those definitions that occur in the body, private part, and specification. This facil-5 ity is provided by the functions

function GetFirstUmLEntry(k) return AdaTranNode;
function GetNextLUniLEntry(k) return AdaTranNode;

1.10 Modifying a Symbol Table

U The basic routines for modifying a symbol table are

procedure AddEntry(k, value);
procedure RemoveEntry(k, value);procedure ReplaceEntry(k, old_node, new-node);

U These three routines only affect the current scope.

The procedure Add-Entry simply adds the entry whose key is given by the parameter 'k'
and whose value is given by the parameter 'value' to the current scope. The procedure
RemoveEntry deletes the entry with key 'k' and value 'value' from the current scope.
Finally, the procedure ReplaceEntry substitutes the value given by 'newnode' for that
given by 'old-node,' under the key given by 'k.'

S2. The Underlying Symbol Table Mechanism

A complete discussion of the symbol table mechanism, in all its generality, is beyond the
scope of this report. This section merely points out some of the novel features of the sym-
bol table mechanism.

I 2.1 The Building Blocks for the Symbol Table Mechanism

3 The following Ada packages make up the symbol table mechanism:

Associations
Low_Level_Symbol_TableDefinitions
SymbolTableFunctions
SearchFunctions

3 2.2 The Low Level Packages.

The packages Associations and LowLevel_SymbolTableDefinitions provide the basic
definitions used by all the other symbol table packages. In particular, they provide the def-
initions for the data types 'Symbol-Table' and 'Search,' which are basic to all the other3 packages.

Aepmdix D May 1992

U

3 2.3 The Package 'SymbolTableFunctions'

The package SymbolTableFunctions provides facilities forU creating new symbol tables,

* associating symbol tables with program units,

* associating symbol tables with their parent and descendant tables, and

• associating symbol tables with their corresponding 'with' and 'use' clauses.

2.4 The Package 'Search-Functions'

I The package Search_Functions forms the heart of the symbol table mechanism. It pro-
vides the mechanism for setting up and manipulating a 'search, on the symbol table for a
given Ada program. This includes facilities for

* creating new searches,

* setting the base (or starting) table for a search,

* setting the mode (LOCAL, GLOBAL, etc.) of a starch,

3 * handling the nesting mechanism for a search,

* setting the search key for a search,

i retrieving symbol table entries associated with a given search,

* adding, removing, and replacing entries in the base table of a given search,

Note that the word 'search' in this context refers to the actual Ada data type 'search,'
which is a type of data object set up to support multiple searches through the symbol table
of an Ada program.

I One final remark. Most tool builders will not use the packages Symbol_Table_Functions
and SearchFunctions directly. Instead, they will use these packages via a simplified inter-
face, such as that provided by the package Parser_Symbol_Table.

I
I
I
I
I

!Appendix 0 May 19926

U
I AppendixE

MODEL/ESL Internal Representation
I
I
I
U
U
I
I
I
I
I
I
I
I
I
I
I

I
ELEMENTARY STATEMENT LANGUAGE

INTERNAL REPRESENTATION
I
I
I
I

MEMO 2 (REVISED)
* January 29,1992

I
I
I
I

NAVSWC CONTRACT NO. N60921-90-C-0298

3 DeUverable Item #0003 - A003

COMPUTER COMMAND AND CONTROL COMPANY
2300 CHESTNUT STREET STREET

PHILADELPHLA, PA 19103

Copyright (4) 1991 Computer Command and Control Company, as an unpublished work.

The contents of this document constitute valuable trade secrets, unpublished works protected
by copyright, and other confidential and proprietary Information; all rights rM.,erved.

I
I

Uteri by p rmistii el" omp' tr CcCommand and Ciiol Conpany. ArnI 23. I992

| /
IkEextary SWenmet Languagn Memo 2

TABLE OF CONTENTS
1. INTRODUCTION 1

2. DATA STRUCTURE OF STATEMENT AND
EXPRESSION NODE IN THE PROGRAM TREE.. 1

2.1. DATA STRUCTURE OF THE PROGRAM TREEiSTATEMENT NODES 1
2•.1.1. LANGUAGE 3
2.1.2. STATEMENT TYPE 32 .1.3. AUXIIARY 3
2.1.4. ENCODE AND ENCODE2 4
2.1.5. STRUCTURE POINTERS 5I2.1.6. LABEL POINTER 5

2.1.7. EXPRESSION POINTERS $
2.2. DATA STRUCTURE OF EXPRESSION NODES 6
2.2.1. EXPRESSION TYPE 7
2.2.2. POINTERS TO BROTHER EXPRESSION 7
2.2.3. NUMBER OF DESCENDANTS 7
2.2.4. POINTERSTO DESCENDANTS 8
2.2.5. NUMBER OF CHARACTERS IN STRING 82 .2.6. STRING 8
3. EXECUTABLET TEMM 9
3.1. CONDITIONAL. BLOCK 103 .,2. ,.OOP L,.o 1
3.3. ASSIGNMENT STATEMENT................. 12
3.4. PROCEDURE CALL 12
3.5. MESSAGE STATEMENTS 13
3.6. INPUT/OUTPUT 13
3.7. INPUT/OUTPUT AUXILIARY STATEMENT 13
3.8 CONTEXT STATEMENTS 13
3.9 CONTROL TRANSFER 14
4. DECLARATION STATEMENTS 16
4.1 PROGRAM TYPE 17
4.2 STRUCTURE TYPE 17
4.3 VARIABLE TYPE ,
4.4 PROGRAM UNIT 18
4.5 STRUCTURE DECLARATION 20

4.6 VARIABLE 21
4.E FILE ... 21
4.8 COMMENT DECLARATION 21

I 5. EXPRESOEXPRES 22
$.1 TYPES OF EXPRESSION NODES 22
5.2 FIELDS IN EACH EXPRESSION NODE 23
5.3 TREE CONSTRUCTION EXAMPLES 31

APPENDIX: ESL STATEMENT CODE 39

I Prepared Under Cantract No. N60921-90-C-0298

Uted by px misuin d Cmputet Camnand A CmMl Company; April 23.1992

Eleeaay $Stueat/aguaa '/ Meme 2

I

I

1. INTRODUCTION

This memo describes the program tree for storing Elementary Statement Language (ESL)
programs in a tree structure in memory. Block statements are nodes that have branches which
fan-out to their constituent statements. Terminal statement form the leaves of the tree. Each
statement is also the root of a subtree of expression nodes that contain the arguments of the
statement. This memo consists of four sections. Section 2 discusses the statement and
expression node structures. Section 3 describes the structure for storing executable statements.
Section 4 describes the node structure for storing ESL declaration statements. Section 5
discusses the expression nodes structure. The ESL tree is used as an intermediary in translation
of source real-time programring languages into Ada. A source language program is translated
first to ESL. ESL has semantics similar to those of Ada. However, the ESL tree is reorganized
and modified prior to translation to Ada.

I 2. DATA STRUCTURE OF STATEMENT AND EXPRESSION NODE IN THE
PROGRAM TREE

I 2.1. DATA STRUCTURE OF THE PROGRAM TREE STATEMENT NODES

This subsection describes the node structure of statements. The statement node structure is
shown 'below in MODEL, C, and Ada in a structure of type node.

I
I
I
I

I Prepared Under Contret No. N60921-90-C-0298 !

SUsed by rmission d pComr Comand aM Cwoln Compny; Apir 23.1992

ElemenaryJ Steo'.waf Languages / Me2

1 nods Is type accessed by Nodelt:,
3 language s f 14(char 1) * /'32, 32SL/
3 stat type Is £14 (bin fix), /*stat type',
3 stnt ame is £14 (bin fix),* /'.tnt £d4 n~r'/
3 aux 'is fid (access) Auxlodeltc. /*attribute field for future use*/,U 3 enoodel Is £14 (char 1), /*encode statesent pointers 0/
3 enaod*2 in £14 (char 1), /*encode expression pointers*/
3 father is £14 (accoe) Node2tr, /01mindiate ancsster'/
3 pbrotber Is fidtaccess) Nodeltc, /Oprevioua sibling stmt*/
3 hrother is £14 (access) Nodltr, /*next sibling otntOI

3 tason is fl14(access) Nodeltr, /than som*/

3 "son Is £ld(aoess) Nodeltr, /*e1l.seM/
3 ilbelpeInter Is fio14(aocess) 3XPNoda1tr.

3 ex2 is £14 (accearn) 3UIPod.Ptc;

tpedf int stat-kind:
typedef ha languagwes;

struct -Node I
languages language;
stint kind *tat -type:
char- Stilt -nuef U]; I' Statement sequence number in the program 0

/* It takes 0 oharmotor positions 'Istruct -Auxiode *aux: P0 attribute nods for future use '
char encodel, enoods2;

/* enoodel encodes the 5 structure pointers 0

/0 enoode2 encodes the 3 expression pointers*/
struct -Nods *father: /* the father *tatment */
struct -Nods *pbrother: /* the previous sibling statement
struct -Nods *nbrother: /0 the next sibling statement '
struct Nods ft sPon;

/* the first statement of the '
I' block If the current node represents a 0

/* ompond statment. If It Is an 0

/* 'if-then-else', It points to the first 0

struct sods *0-son: /* statement of the 'then' block. 0

/* the first statment of the */
/* '*lse' block If It Is an 'if-then-else"/
/* statement and If there Is am 'else' 0

/* block, * NULL' otherwise. 0

at ruct _3vpod *labeljointer:
struct Zxiseds *eX0, 'exi, *ex2;

MYP NODEi 1 COD
L*NOUAGE: COSRACU:.
$TNT T113: INIEGER;
STiNE NU: UIRm;
AUX: AU2OOCWR:
ENCODEI: CIMACIU;
ENCOD22: CERNACIER;

SDOUH1: SOMM13

LASN:LPOIR NDU

31MPoy: W O W W S7R
321: zirmi
312: EWNOIWU

END V3ECOD:

UPrepared Uinder Contract No. N60921-90-C-0298 2

Vied byr pL mission d Canue Cnumand an Caiwd Couparry; April 23.19IM

/

Elewniary Sweamt lagnmuag Mee 3

This structure is graphically described as follows:

language

sutmt type

aux,

encodel3 .noode2
encode2

5 structure pointers

label pointer

j S3 expression pointers

Three expression pointers exO, exl, and ex2 are used to store statement arguments in3expression nodes. The fields of the statement structure ae as follows:

2.1.1. LANGUAGE

This field is reserved for temporary and future use to denote the translation from a source
I language to a version of ESL It indicates the need to reorder the programs and to use

procedures that correspond to source program special functions and operating system calls. This
must be done in the translation from ESL to Ada.

P2.1.2. STATEMENT TYPE

i Statement types are discussed in Section 3 for executable statements and in Section 4 for
declaration statements. The statement type are represented in this memo by symbolic names.
The statement types are listed in the tables in Section 3 and 4. The corresponding identification
number of each statement type is given in Appendix L

2.1.3. AUXILIARY

This field is reserved for temporary use in the processing of an ESL tree.I

Prepared Uder Cxftwcl No. N6921-90-C4-0298 3

Ued by Pcrmissiao d Q J(C p r Ccamnud a W C ajim C m.np y; A ril 23. I99

2
Eleawy SAtmmet Languega / men 2

I 2.1.4. ENCODEl AND ENCODE2

Encodel and Encode2 are represented each by one character. Encodel encodes theIpresence/absence of 4 structure pointers:

pbrother
nbrother
tson
t-son

The presence/absence of each pointer above is a binary number in this order. The
presence/absence of the above four pointers is encoded by one of the following 16 characters:

3 0,1,2,3,4,5,6,7,, ,9,LB,C,D,3, I

Since every statement (except the root) has a father pointer, the presence of the father3 pointer is not encoded.

For instance, encodel = '7', corresponds to the binary number

I 0111

from the encoding rule, we find

pbtother - null
nbzother /- null

t.. on /m null

son /- null

Similarly, the character encode2 encodes use of four expression pointers:

label_poLnte:
eO
ezl

ez2

as one of the 16 characters:
i 0, 1, 2, 3, 4, 5, 6 , 7, 8, 9, A, 3, C, D, E~r

Encode I and Encode2 are also used to unload the program tree to a disk file in depth first
left to right order and to load back the disk file to memory and rebuild the tree.

I
I

i Prepared Under Coted No. N60921-90-C-0298 4

I Used by p-missm d C(Cowvr Caunand SM Crd C"mVwr Apr 23. 1992

/

Eksmtary Setment Laqua Mem 2

S2.1.. STRUCTURE POINTERS

A statement is graphically portrayed as having five pointers to its neighbors, if any.

father

Ibote nbrother

t.8on .aon

2.1.6. LABEL POINTER

This field contains the pointer to a label expression, if any. Its presence is included in
encode2.

S 2.1.7. EXPRESSION POINTERS

There may be as many as three main expressions representing the arguments of each
statement. The existence of such expressions is coded in encode2. Each expression may consist
of further subexpressions, as discussed further.

I
I

II
Prepared Under CxtruA No. N6*21-Mf-) 5C4::'i

I ~~U by rm sa,Sw c CO.iawr iCdawnd Ciwg" Cmpny; April 23.19IM

3 VuenW7yStatewMnt L&X9Wq MSuwe2

S2.2. DATA STRUCTURE OF EXPRESSION NODES

An expressions node has a structure of type expoode. Following is the definition of the
structure in MODEL.. C and Ada:

1 ezpnode ise type accessed by Ezpnodeltr,
3 ezp type ise fid (bin fix),
3 ab ise fld(bin fix),

3 nbrother ise fld(acceec) Kzpnodtr,
3 no of doe is fLd (bin fix),
3 poinj(3 is. ld(acceec) 2xpnod.Pts,

3no of chat ise fld(bin fix),
3 tr value is fld(char (*)); /* variable length field *

Ij typedef int exp X.ind; /* Pic '999' ,

exp_k ind expt.ype; /* Nmeric code of the expression *

int nb; /* Xtie0ifnbrothsr ise NULL, 1 otherwise *

a truct Zzpnods *nbrother; /* Pointer to next brother *1

1 mt no _of doeo; /* Nmber of sons of current node *

etruct Exzpnode *poiat[33; /* Pointers to son* of this node *
mt no of-char; I' Lesigth of str value

char str walue(641;/* Variable length string value,up to 4046 *

TYPE EXPNODE (LflI STR VALLUE: integer: iO)
1S RICORD

3M TYPI: INTEGER,
NB: INTEGER;
NBROTRER: WNODEZPTR;I No or DzSC: INTEGER;
POINT W VCTOR(l. .3);
NO OF CZAR: INTEGER;
8Ti VALUE: STRING(1.. LEN BTR VALU):

RE WCORD;

R TYPE 3XP VECTOR IS ARRAY (POSITIVE RANGE 0>) OF MNODEPTR;

Prepared Under Ceasrec No. N6021-9t-C-#)JU 6

I Uggi by permiio fI C~mpilef Caiwnand and Cangr Comipany; Apfil 23.1992

'Ekmntary Statement Lenug. "/ Memo 2

This structure is graphically described as follows:

nbrother

no of deac

Ii i 3 point

noof char

st: value

3 Each field of the structure expnode is explained in the following.

2.2.1. EXPRESSION TYPE

The field expjtype is an integer which identifies the type of the expression. The expression
types and respective numbers are given in Section 5.

g 2.2.2. POINTERS TO BROTHER EXPRESSION

The field nb records the presence (nb=l) / absence (nb=l) of next expression nbrother. This
enables creating a sequence of expressions. For instance, a function definition may have several
formal parameters.

stmt type - Not SPC
ezO -> function nam
eal ->parameters pl, p2, p3
e2 -data type of return value

The structure of such a statement is:

Gil

I 2.2.3. NUMBER OF DESCENDANTS

The field no-of-desc records the number of sons of the current node. When the node is a
terminal node, it has zero descendants.

Prepared Under Commtt Ne. N92J--C-W98 7.

I Ud by pcr im o d Cmpkv CaWnWa ad Cad Cnpmiy; April 23.1992

3 EEk,ensary Sbaewt aswwpa MeuM2

i 2.2.4. POINTERS TO DESCENDANTS

The field point is an army of pointers to son expression nodes. It is a three element array.

2.2.5. NUMBER OF CHARACTERS IN STRING

The string str.yalue has a variable length. The length (number of characters) of the
str_value field is recorded in this field. A value of 0 in this field indicates that the str_value field
of the expression node is not used.

2.2.6. STRING

This field str_value of the USAGEEXPR (see Section 5 for expression types) is used to

ft store the function of some expressions as follows.

VALUE MEANING

COMMENT @C an inline comment.
DELTA @D precision of a fixed type.

ENUMER @E a list of enumerated data types.
INITIAL @I initial value.

LAYOUT @Y bit range of component.

LENGTH @L the length of a record in terms of bits.

NEW @N new instantiation of type or generic name.

PACKING @P word and byte information for a variable
packing clause.

RANGE @R range of a scalar.type.

I ~Prepared Uxder Conuzuct No. N6021-90-C-0298

I Use by pcrnmisic of Comnpuw Command and CwMio Company; Apwil 23. 1"2

EIsmeaktry Sataicav Lantan Mean 2

3. EXECUTABLE STATEMENTS

The executable statements in ESL are listed in the following table.

STATEMENT TYPE STATEMENT SUBTYPE STMT TYPE NAME

1. Condition if-then-else IFSTAT

Block case CASESTAT

when WHENSTAT

2. Loop while WHILESTAT

Block until UNTILSTAT

I for FORSTAT

3. Assignment assignment ASSIGN_-STAT
Terminal

4. Procedure Call call CALL-STAT
Terminal raise exception RAISESTAT

5. Message send/receive message MSGCALL
Terminal accept message MSGACCEPT

S 6. Input/Output read READSTAT

Terminal write WRITESTAT

7. I/ Auxiliary open OPEN-FILE

Terminal close CLOSEFILE

position POSITIONFILE
8. Context with WITHSTAT

Terminal use USESTAT

m.I programseparate PACK-SEP
PROCSEP
FCN_SEP
TASK-SEP

i separate SEPARATESTAT

pragma PRAGMA

9. Control Transfer return RETURN_STAT

Terminal go-to* GOTO

exit* EXITI null* NULL
Statements eliminated in later processing of ESL.

U The expressions used with each statement type are discussed below.

Prepared Under Contract No. N60921-90-C-0298 9

IUsed by pcmission C(Computer Comaand dC-ua Company; Aprd 23. I92

5Elmeatwy Statement Languqa / Mem. 2

3.1. CONDITIONAL BLOCK

A conditional block can be of types IFSTAT, CASESTAT and WHEN-STAT.

IF.STAT statements represents:

XV <condition> TRW <tatsmwnts1>;
(zUSE <tatent82>)

<condition> is a Boolean expression. The ESL statement format is:

sta type - Ir STh!;

ezo -> <condition>;
t son -> <statemntsul;
" son -> <statemants2>, if any;

A CASE_STAT statement represents choice of one of several blocks <statementsl>,...,
<statementsn> according to the values valuel,..., value n. The CASE statement contains
blocks of WHEN and ELSE statements. Each of these blocks contains the respective
<statementsi>:

The format of the CASE statement is:

stt type - CASZ ,STAT;
ezO -> <expression>;
teson -> <first WI]W statement>
e. son -> <firot statement under the LSE stateznt, if any

The format of the WHEN statement is:

3 stot type - wMM STAT
ezO -> <valueL>;
t-son -> first of statementi;

The CASE statement tree representation is illustrated below.

I
a

I

Prepared Under Contract No. N60921-90-C-O7298 10

I Ue~d by pcrmissim d Comlpm CommuAn and Coumi l Copeny; Apri 23,1992

Eksentary Stwateal Languag MeMO 2

I|

SAS

first of eLSm statemt

ZO expression aZO expression

The ESL ormat is5stru yp WIo.T
tx s><on t son>

..first of <statentsl t first of <stateoynt2>

W, 3.2. LOOP BLOCK

The loop statement has three forms: WHILE.STAT. UNTIL.,STAT, and FOR-STAT.

A VHLE_STAT statement represents:
WHILE <condition>I It is followed by descendants forming the loop body.

<condition> is a boolean expression.

The ESL format is:

stat type - WHILE_STAT;
exO -> <condition>;
t-son -> first statement in loop body;

An UNTILSTAT statement represents:5 DO UNTIL <condition>;

The ESL format is:

stat type - UNTIL STAT;

t-son -> first statement in loop body;

UiPrepared onder Cenirnet No. N60921-91-4C-0292

SUsed by pcrinsion of Conp~ef Commarmd and Cmieol Caxnpeny; April 23.19IM

3 rmentary SWent Inguagu , MeO2

A FoRSTAT statement represents:

FOR <loop variable> - FROM <initial value> TUU <final value>
[3? <step lengt-h>)

Its ESL format is:

stmt type = MORSTAT;
szo -> <loop variable>;
exl -> <initial value>, <final value>, <step length>;
t-son -> first statmint in loop body;

3.3. ASSIGNMENT STATEMENT

An assignment always has a left hand side variable and a right hand side expression. It has
the ESL format:

sitttype = ASSZI STAT;
sO --Z> the left hand side variable(s);

exi -> the right hand side ezpression;

3.4. PROCEDURE CALL

This statement represents regular as well as operating system calls. The source program
may call the operating system to provide certain services. Operating system calls in a source

language for input/output and task communication ae represented by ESL statements in the
Input/Output (Section 3.5) and Message (section 3.6) categories described below respectively.

Other operating system calls are handled as this type of procedure call statement.

The ESL format for a procedure call is:

stst type - CALL STAT;
exO -> name of the procedure;
en2 -> list of parameters;

exl points to a list of parameter expressions. Each parameter expression consists of a parameter

nam.

Operating system calls in a source language program perform a variety of functions which

may not have a direct equivalent in Ada. Their call name and parameters will be stored for later

analysis. Operating system calls for task messages and I/O are discussed separately below.

The ESL format for a RAISE statement is:

stt type - RAISE STAT
ezO -> name of ezoeption
ezarple: RAISESTAT (ERIOR);

Prepared Under Contrad No. N60921-90-C-0298 12

Umid by pcnrsio d" Conputer Command and Casmel Compsy; AprOi 23.1992

Elementary Statement Languan / Me.m 2

I 3.S. MESSAGE STATEMENTS

These statements are used to indicate communications between tasks. There are two
statement types. MSG_CAL is used when the caller specifies the name of the other
communicating task. MSGACCEPT is used when the communication may involve unknown% other tasks. A communication must pair a MSGCALL in one task with a MSGACCEPT in
another task. Their ESL format is:

stmttype - MW CALL
ezo -> name of a procedure used to interpret a mssage send/receive

operation of source program.
exi -> list of parameters with modes
et2 -> a list of task and entry names

stmt type - XSGACCKT
oxO -> name of a procedure used to interpret source program send/recoive5 e l -> list of parameters with nodes
ez2-> entry names

I 3.6. INPUT/OUTPUT

Input/Output statements represent I/O activities in the source language or its operating
system. The ESL format provides for storing the operating system call name and its arguments
as follows:

stmt type - RZWSTAT (for input) or
WRXTE STAT (for output)

exO -> name of a procedure that interprets the operation of the source
language and operating system X/O

exl -> list of parameters
ex2 -> file name, format

S 3.7. INPUT/OUTPUT AUXILIARY STATEMENT

There are three input/output auxiliary statements: OPEN_FILE, CLOSE_FILE, and
POSITION_FELE. They are stored as follows.

stat type - OPM VILE9, CLOSz FILZ or POSITIONILZ
eZO -> procedure name that interprets source program 1/O auxiliary

commands. Rmty ezpression () if not applicable.
ezi -> list of parameters
ez2 -> file n

I 3.8 CONTEXT STATEMENTS

These statements indicate that definition of a program entity is dependent on other3definitions or incomplete.

WITHSTAT and USESTAT refer to other packages. The format is

i I Preptred Under Contract N. N921-0.C-0298 13

Und by pe rmission a(Cmpuet Command and Cas4 Compeny; Apn] 23.1992

/

j Wemeutwy Statemnt La n /MeMo 2

stft tyrpe - .ML 82T or USE STAT;

OS0 -> package nsmas for USg._STAT
package and program unit nm for ITUSTAT ;

PACKSEP, TASK..SEP, PROCSEP and FCNSEP are used to indicate that the body of
these program units (package, task, procedure or function, respectively) is provided elsewhere
and compilable separately in Ada. The format is:

stnt typ PACK BThT, TASK BEPI PROCS82F or VCl 82P

There are no arguments. This is a terminal statement with the respective program unit
specification as the parent.

The SEPARAT'I'.STAT statement is used to indicate that the body of a program unit
follows, where the specification is in another package. The format is

stat type - S31ARATE STAT
ezO - package nas where unit specified

This is a terminal statement preceding the program unit body declaration.

The PRAGMA statement provides information used in the compilation. The format is:
I stmt_type - PRAGNA

ex0 - pragmne

exi - list of attributes

I 3.9 CONTROL TRANSFER

A return statement returns the control from a called procedural or function to a calling
procedure or function. A return statement may include an expression for a returned value.

A return statement is stored as:

stot type - RETURM STAT;
ezO -> expression, if any;

The following three statements extend ESL: GOTO, EXIT, NULL. These statements can
have one or more labels. They are eliminated in later processing of ESL. Each of these
statements is stored in a node statement structure, as a terminal ESL statements.

A Goto statement has its usual meaning.
SOT (abel>

i The format is:

i tva_typ* - GOTOSTAT:

oil -> procedure or function name; if <label> is not in the scope of the
inediate enclosing procedure or function.

III
Prepared Under Centacet No. N60921-96-C-029S 14

U d by P.tnision dC Co'm d C _Mfd " C ai CompaY; APO 23.1992

J kieCAVeYw SAWOela LaaguagS Messe2

i An EXiT statement nested in a loop transfers control to the statement following the end of a
nesting loop. If an EXIT does not have a label, the control always transfers to the end of the
immediate nesting loop. If an EXIT statement has a label, the control transfers to the end of the

I labelled loop. The labelled loop must nest the EXIT statement.

The format is

stat' type - ,XZT;
exO -> <label>;

i A NULL statement provides a holder for a statement label, as the destination of a GOTO
statement. A NULL statement format is:£ stuatm type = HULL;

i

i
I
I
i
I
I

I

i Prepared Under Coetuc* No. N60921-9O-C0298 15

I ~ Ud by ptrvnission d(Ccpie COMNWn mid CcoM Cwimpmy; April 23. IM2

/

4. DECLARATION STATEMENTS

The table below summarizes the ESL declaration statements.

STATEMENT TYPE STATEMENT STATEMENT NAME
SUB TYPE

1. Program Type: task TASK-TYPE
Block generic program PACKGEN

PROCGEN
FCNGEN

2. Structure Type: record type RECORDTYPE
__Block

3. Variable Type: variable type VARIABLETYPE
TerminalI 4. Program Unit: system SYSTEM
Block program file PROGRAM_FILE

package PACK..SPEC
task TASK-SPEC
procedure PROCSPEC
function FCNSPEC

program body PACKBODY
PROC_.BODY
FCNBODY
TASKBODY

begin-end BEGIN
exception EXCEPTIONDCL

EXCEPTIONHNDLR
select SELECT

5. Structure of Variable: record RECORD
BlockJ 6. Variable: variable VARIABLE
Terminal constant CONSTANT

7. File: i/o file IoJLE
Terminal io device 10-DEVICE

task entry TASK-ENTRY
8.T Comment:

ordinary ORD-COMMENT
preprocess PREP-COMMENT
compiler COMPCOMMENTI -debugging DEBUG-COMMENT

These types of statements are further described below.

Prerpmw Under Cenuwct No. N60921-0-C-0298 16

U by pcmu" 'K at Compamet Cm dand C Ca_ A aC pany; Apa 23. 1" 2

EknearY SltMewt Languag / Me* 2

34.1 PROGRAM TYPE

Task type is stored in the ESL program tree as follows:

stm type - TASK TPZ
eiO -> type nam;

There are three generic statement types for package: PACK-GEN, for procedure:
PROCGEN and for function: FCN_GEN. They have the following points.

stnttyp. - PAKM, PROC GIN or C_=GM
ezO -> nam
t-son -> first generic formal paramter
youngest sibling of t son -> specification of generic program unit

This is illustrated in the figure below.

PACK_SPEC exO -> name of generic unit
PROCSPEC

I RFCNSPEC

t-son

forma specification of

I4.2 STRUCTURE TYPE

A record type declaration which has the following format:

stat type - RECORD TYP3;
ezO -> type name;
ez -> length5 t son -> fizst entity of the record,.

I

I Prepred Under Contrad No. N60921-LC-0298 17

ed by fcnmissioa d Qxnpftet Canwand ad ApI 23. M

Elementary Smatement Language Memo 2

4.3 VARIABLE TYPE

3 The variable type declaration is stored as:

stmt type - VARIA _Tz;
ezo -> type name;
*xl -> type definition, range, enumeration type values,initial value, length, packing and layout.eL2 -> dimension ranges, if any;

4.4 PROGRAM UNIT

3 A program unit declaration is a block statement. It denotes begin-end, a system, a

subsystem, a package, a task, a procedure or a function.

3 Begin_end has the following format:

stt -type - BEGIN;
t son -> first statement in the block;

A system or subsystem head is stored as:

stmt type - SYSTD(;
exO -> system or subsystem name;
t-son -> first statemnt in a system;

A package or a task do not have parameters. Their format is

stmt type - PACK SPEC or TASK_SPZC
exO -> name, [nae of generic package being InstantiatedjI Their body block has a similar format

stmt type - PAM BODY or TASKBODY
exO-> nae
t son -> first statement

Note: there is no PACK_BODY of the package instantiate a generic package.

A function may have multiple IN mode parameters and returns a value. A procedure may
i have none or multiple IN, OUT and INOUT mode (including no value at all).

A function format is:

stat type - FCN SPEC;
ezO -> function name, [name of generic function being instantiated];
exl -> formal parameters; (or generic formal parameters

if the function is an instance of a generic function);£ ex2 -> type of return value;

Prepared Under Contract No. N60921-90-C-0298 1 .

I Usd by p, -ission of Computr Command and Cond Company; April 231992

Elementary Ssaement 1AR- Mewe 0

A function body is stored similarly as:

stst type - rO= 30D1;
ezO -> function name;
*zl -> input formal parameters, names and types
ez2 ->type of return value;
t-son -> first statemnt;

Nte: there is no function body if it is an instantiation of a generic function.

A procedure is stored as:

sta t type - PROC SPEC;
ezO -> procedure name;
*xl -> formal parameter name, mode, and type or generic formal paramaters

if the function is an instance of a generic function;

The body of a procedure is:

stmt type - PROC _WY;
ezO-> procedure name;
ezl-> formal parameter name, types, mode and default value;
t son -> first statement;

Note: there is no procedure body if it is an instance of a generic procedure.

The storage of a parameter in a function or a procedure declaration is further explained
below.

Each formal parameter may have a name, a mode, a data type, and a default value. These
associated attributes are stored in expression data structure expnodes as follows:

exl-> expnode expjtype:FORMALPARA;
nbrother. points to next parameter,
noofdesc: 3;
point(l): points to a NAME expnode which contains the parameter mode;

That is, one of "IN", "OUT", or "INOUT";
point(2): points to a NAME expnode, which contains the

data type;
point(3): points to an expression expnode, which is the default value

of the parameter,
no_of_char: length of the parameter name;
str_value: parameter name;

The formats for EXCEPTION and SELECT are

stmt type - EXCEPYZOK
example: EXCEPTION;
(descendants are the WHEM <conditions>)

stm type - SZLCT
example: SELCT

Prepared Under Contact No. N6O921-90-C-O298 19

£ Used by pcrmission d Conmputer Command and Control Company. AriiJ 23,1992

3 ~Elen 1.1 S*.IC-ext Langaes es

5 This is illustrated below:

5 Declaration

Sttmn
el

EX
PAAEE

R 45 TRUTUE DECLARATION

A record declaration is of a single or an array of records. This declaration is stored in the£ program tree as:

stut -type - RZ=RD;
ezO - record na;

->l type, length;

(i5z-ul trpeet a single record);

t-son _> first field of the record;I The fields are stored as descendents of the record.

IPrepared Under Conimcf No. N60921-90-C-0298 2

S 1J~~Un by pc rmissioni o Compwer Cwuniand and Caurol Comnpany. Arl 23, 1"2

R EkewntarY MSla Rnt LaMsUn Memo 2

I 4.6 VARIABLE

Is There are two declarations in this category: variable and constant declarations. They are

stored in the program tree as follows.

variable:

stat .type - VXRXALE;
ezO -> variable name;
Iz 1-> type, range, initial value, packing, length;
e2-> dimension ranges;

(if ex2unull, it represents a single variable);

3 constant:

stat type - CONST N ;
ezO -> constant nan;
ezl type, value, packing, length;
ez2 -> dimnsion ranges;

(if ez2mnull, it represents a single constant);

4.7 FILE

A file declaration of a file is stored as:

stat type - 10 FILE, X DEVICE;
ex0 -> tile name;
ezl -> list of parameters;

ez2 -> <file type>
I <file type> could be s equentiar', post,,

'mail', 'isam', 'rol', Iscrean', 'direct' or others used in the
source language or operating system.

A task entry is declared as:

stmt type - TASK ZNTRY
ezO -> name
exl -> list of parameters, modes and types.

I 4.8 COMMENT DECLARATION

A comment may originate in a user comment, a keyword or comment in the source language
program. Additionally, a source language keyword may be stored as a comment expression. It
may affect the translation of a program from ESL to Ada.

There are four kinds of comments: ordinary user comment and source language
S preprocessor command, compiler command, or debugging command:

Their format is

stnt type - ORD CCO , PRECOIMNT COI Cow=,
or nSUG €:OHHZN

zO -> coeiment

Prepared U ner Conrue No. N60921-90-C-0298 21

Uned by p.j ssin d C4npner Camand aMd Camvl C pmy; ApiA 23.1992

kmhuty $ mSent Langxuga Memo 2

I. EXPRESSION NODES -

5.1 TYPES OF EXPRESSION NODES

I The table below describes the type of expnodes.

3 Logical Expressions

Code Expr Name Operation Operator Example

3 1 OREXPR inclusive disjunction OR a OR b

2 XOREXPR exclusive disjunction XOR a XOR b

3 ANDEXPR conjunction AND a AND b

4 NOT-EXPR logical negation NOT NOT a

Relational Expressions

j Code Expr Name Operation Operator Example

11 GT_EXPR greater than > a > b

12 GEEXPR greater than or equal to >f a >= b

13 EQ..EXPR equal to f a =b

14 NE.EXPR not equal to 1f a= b

15 LTEXPR less than < a <b£ 16 LEEXPR less than or equal to <f a <= b

Arithmetic Expressions

Code Expr Name Operation Operator Example

21 PLUS-EXPR addition + a + b
identity + +3, +a

22 MINUSEXPR subtraction a - b
negation - _ -22.5, - a

23 TIMES_EXPR multiplication * a * b

24 DIVEXPR division / a / b3 25 EXPNT_EXPR exponentiation a **b

26 MODEXPR modulus MOD a MOD b

27 REMEXPR remainder REM a REMb

28 ABSEXPR absolute value ABS ABS ag

Prepared Under Contre i No. N60921-90-C-0298 22

thai by pcrmissicm d CemprA Comm d aM Coma Company; AprI 23.1992

£/kmenser7 Swene Langugsa Mt.M 2

String Concatenation
Code Expr Name Operation Operator Example
'31 CONCATEXPR concatenation & a & b

Miscellaneous

Code Expr Name Operation Operator Example

41 PARENEXPR parentheses () (a+b)

42 SUBSCREXPR subscripts () a (i, j, k)

43 FUNCION_EXPR function () f (a,b)

44 QUALIF_.EXPR qualification . filel.fieldl

45 ATMREXPR attribute ' minteger' image

46 DOTSEXPR range I .. 10, a.. b

47 COMMAEXPR delimiter, separation f (a, b, c), a(i, j, k)1 48 FORMALPARA formal parameter clause p I: in, integer
49 USAGEEXPR defines attributes @e: red, blueI

Terminal Nodes

I Code Expr Name Operation Example

61 STRINGCONST charcter string "abcdefg"

3 62 NUMBERCONST numeric constant 3.14

63 NAME name abc, ml

I 5.2 FIELDS IN EACH EXPRESSION NODE

Of the 7 fields in the expression node structure, 'nb' and 'nbrother' are not used for the

purpose of storing expressions per se. They are used to indicate the existence of other related
expressions. Normally, if an expression has an 'nbrother', the 'nb' field of the root node of the
expression is set to 1, and the 'nbrother' field points to its 'nbrother' expression. Otherwise they
are 0 and NULL respectively. Therefore, in the following description, 'nb' and 'nbrother' are not
mentioned.

II
3ePrepared Vnd'r Cenfteci No. N60921-90-C-.029o 23

S C~Und by p,-i.~sm of Conruer Camnumd OWd C-00V1 Cnpeny; A1163 73 1992

I Ekeniv Statement Lanaga MeVA 2

I Logical Expressions

5 1.ORBZXPR (inclusive disjunction): <expri> OR <expr2>

exp -type - 1 (OREXPR)
no of desc - 2
point(l) - <expri> subtreeS point (2) - <expr2> subtree
point (3) -null
no of char - 0

str-value - empty string

2. XOR-EXPR (exclusive disjunction): <expri> XOR <expr2>

exp type - 2 (XOREXPR)
no of desc - 2
pint(1) - <exprl> subtree
point(2) - <expr2> subtree
point(3) - null

no of char - 0

str-value - empty string

3. AND EXPR (conjunction) : <expri> AND <expr2>

exp type - 3 (ANDEXPR)
no-ofdesc - 2
point(1) - <expri> subtree
point (2) - <expr2> subtree

point(3) - null
no-of-char - 05 str-value - empty string

4. NOTEXPR (logical negation) : NOT <expr>

exp-type -4 (NOTEXPR)S no-ofdesc - 1
point(l) - <expr> subtree
point(2) - null

point(3) - null
no-of-char - 03 str-value - empty string

U Relational Expressions

IGTEXPR (greater than) : <exprl> > <expr2>

exp_ type - 11 (GTEXPR)

no-of-desc-2
point(1) - <expri> subtree
point (2) - <expr2> subtree
point(3) - null

I r-alue - empty string

Prepared Under Contfract No. N60921-90-C-0298 2

used1 by , -nision o(Cmqxtr Comnmand and control cw1ranY; ArnI 23,1992

5Slemmnlary Situement LAnegazS Mie 2

3 2. GEEXPR (greater than or equal to): <exprl> >- <expr2>

expt ype - 12 (GEEXPR)
no-ofdeac - 23 point(l) - <expri> subtree
point(2) - <expr2> subtree
point (3) -null

no-of char-0
str-value -- empty string£ 3. EQ _EXPR (equal to): <expri> - <expr2>

exp type - 13 (EQ_EXPR)
no-of-deac - 2
point(l) - <expri> subtreeS point(2) - <expr2> subtree
point(3) - null
no-of-char - 0

str-value -empty string

4NEEXPR (not equal to) : <expri> I'<expr2>3 exp_type - 14 (HE3EXPR)
no-of-deac - 2
point(1) - <expri> subtree
point(2) - <expr2> subtree
point(3) - null
no-of-char - 0
etr-value -empty string

5.L?_EXPR (less than): <expri> < <expr2>

exp type - 15 MLEXPR)3no-of-desc - 2
point(1) - <expri> subtree
point(2) - <expr2> subtree

point (3) -null
no-of-char - 0
str value -empty string

5 6.LEEXPR (less than or equal to): <expri> <- <expr2>

exp-type - 16 (LEEXPR)
no-of desc - 2Ion~)-<xpl ute
point(2) - <expri> subtree

point(3) - null

no of char-0

str-value - empty string

Prepared Under CenirwE Ne. N6092I-9O-C-O298 2

5 Used by purmissin of Cminpzte Command and Czuudl Company; April 23.1992

U mewar Swueuwat Lagnpqu MENU 2

I Arithmetic Expressions

1PLUSEXPR (addition, binary operation): <expri> + <expr2>5 .xp type - -21 (PLUS EXPR)
no-of-deso 2
point (1) -<expri> subtre
point (2) -<expr2> aubtree
point (3) -null

no of char -0Ia -trvalue -empty string
2. PLUSEXPR (identity, unary operation): + <expr>5 exp .typo - 21 (PLUS EXPR)

noof-desc - 1
point (1) - <expr> subtree
point(2) - null

point(3) - null
no of char - 0
a tr-value - empty string

3 . miNus3EXPR (subtraction, binary operation): <exprl> -<expr2>

exp type - 22 (MINUSERPR)
no of deac - 2I point(1) - <expri> subtree
point(2) - <expr2> subtree
point(3 - null

_oo-a -0
str-value -empty stringI 4. MINUSEXPR (negation, unary operation): < expr>

exp-type - 22 (MINUSEXRR)
no of deac- 1I point(l) - <expr> subtree
point(2) - null
point(3) - null
no of char - 0

stryalue - empty string

5. TIMESEXPR (multiplication): <expri> *<expr2>I exp type - 23 (TIMESERPR)
no of desc - 2
point(1) - <expri> subtree
point(2) - <expr2> subtree
point(3) - null

a no of char - 0
str-value - empty string

I Prepared Under Contract No. N6)921-90-C42M 26

tUed by p. Lsi Compter Comnmand and Contiol Cornpany; AwIl 23. Mq9

I Elmentry Satemnt Lagaagez emo 2

£6. DIVEXPR (divis ion): <expri> / <xr-

exp__type - 24 (DIVEXPR)

no-of-deso-
point(l) - <expri> subtree
point(2) - <expr2> aubtree
point (3) - null
no-of char-0

tr-value - empty string

3 7.EXPNTEXPR (exponentiation): <expri> <expr2>

exp type - 25 (EXPNTEXPR)
no-of-desc - 2
point(1) - <expri> subtree
polnt(2) - <expr2> subtree

3 no of char - 0
str-value - empty string

8MODEXPR (modulus) : <expri> MOD <expr2>

exp type - 26 (MODEXPR)
no-of-deac - 2
point(l) - <exprl> subtreeI point(2) - <expr2> subtree
point(3) - null
no-of char - 0I str value - empty string

9. REM EXPR (remainder) : <exprl> REM <expr2>

exp__type - 27 (REM EXPR)
no-of-dese-
point(l) - <expri> subtree
point(2) - <expr2> subtree
point(3) - null
no-of-char - 0
str-value - empty string

10. ABSEXPR (absolute value) : ABS <expr>

exp_ type - 28 (ABSEXPR)I no-of desc - 1
point(l) - <expr> subtree
point(2) - null
point(3) - null

no-of-char - 0
str-value - empty string

Prepared Under Contract No. N60921-90-C-0298 27

Csad by PL --nission of Cm~pne Cwnmd W Catrd Campuiy. Apil 23,19IM

UE~rwealar7 SA~WORf~ LA qe0es Memo 2

I String Concatenation
1CONCAT-EXPR (Concatenation): <.xPrD- G <ezpr2>

.zp_ type - 31 (CONCAT-EXPR)
no-of-dese - 2
point (1) - <expri> subt re
point (2) - <.xpr2> 3ubtree

point (3) - null
no of char - 0
*tr value - emipty string

Miscellaneous Expressions

1PAREN-EXPR (parentheses): (<expr>)

exp type - 41 (PAREN-EXPR)
no-of-desc - 1
point (1) - <expr> subt reS point(2) - null
point(3) - null
no-of-char - 0

str value - empty string

2. SUBSCREXPR (subscripted variables): <expri> (<expr2>)

exp-type - 42 (SUBSCREXPR)
no-of-desc-2
point(l) - <expri> subtree, the variable
point(2) - <expr2> subtree, the subscriptsI point(3) - null
no of char - 0
atr value -empty string

3.FUNCTION-EXPR (function calls) : <expri> (<expr2>)

exp type - 43 (FUNCTION-EXPR)
no-of-desc - 2

point (1) -<exprl> subtree, the function nam
point(2) - <expr2> subtree, the actual parameters
point(3) - null
no of char-0
str-value empty string

3 4. QUALIFEXPR (qualification): <exprl> . <expr2>

exp type - 44 (QUALIFEXPR)
no-of-desc - 2
point(1) - <expri> subtree, such as record nameI point(2) - <expr2> subtree, such as component in record
point (3) - null
no-of-char -0

str-value *empty string
5. ATTRSXPR (attribute): <expri> '1 <expr2>I exp_ type - 45 (ATTRhEXPR)

no-of-desc - 2

I Prepared Under Conate No. N6ff 21-90-C-4J298 2

S ViUAl by pe minm d Catipur Ciwmmd Wn Camel CAnpovy; Apra 23. 992

I Eementar7 Sfatemeal Lexgatt Me.e 2

point (1) - <exprl> subtree
point (2) - <expr2> subtree

point(3) - null
no of char - 0

at' value - empty string

6. DOTS EXPR (range): <exprl> .. <expr2>5 exptype - 46 (DOTS.EXPR)
noofdesc 2
point (1) - <exprl> subtree

point(2) - <expr2> subtree
point(3) - null
no of char - 0

Sstrvalue - empty string

7. COMMA_EXPR (delimiter, separation): <exprl> , <expr2>

exp_type - 47 (COMMA_EXPR)

no ofdesc - 2

point(l) - <expri> subtree, subscript or actual parameter

point(2) - <expr2> subtree, subscripts or actual parameters

point(3) - null
noofchar - 0
strvalue - empty string

8. FORMALPARA (formal parameters): [<exprl>] [<expr2>3 [<expr3>1 [<expr4>1

where <expl> - formal parameter name

<exp2> - mode, 'IN', 'OUT', or 'INOUT'

<exp3> - parameter type name
<exp4> - default parameter value, may or may not

be present

exp type - 48 (FORMAL-PARA)
no of deac - 3 if <exp4> present, 2 if not

point(l) - <expr2> subtree, the mode
point(2) - <expr3> subtree, the type name
point(3) - <expr4> subtree, the default value if present

null if absent

no ofchar - length of the formal parameter name, <exprl>
stt value - the formal parameter name

I
5

I

Prepared Under Cotac No. N60921-0-"298 29 ,

SUmsd byp is. d Campu Cimd ud CoCa W.u.Ap23.

I Ekmetenarj Staemet Langaa MMe 2

9. USAGE EXPR (expression usage indication): GC: <expr>
where C is a single character indicating the usage of <expr>.

*xptype - 49 (USAGE EXPR)
noof desc - 1
point(l) - <expr> subtree
point(2) - null
point(3) - null
noof char - length of the character string in 'str value'

str valu, COMMENT" if C-FCv

NDELTAO if C-'D'
WENIMRN if CW''E"

'DIGITO if C=' G
INITIAL" if CWS I

'LENGTR" if CMIL*
NEWO if C" Nd'

"PACKING" if CM 'P'
"RANGE" if CW'R"
"LAYOUTf if C ' Ye

For each comment a usage expression node (exp-type=USAGE-EXPR)
with a string constant node (exp.type=STRLNGCONST) has its only de-
scendent (point(l)), which contains the comment as its 'str._value'.

In general, the usage expression of the comment is 'pbrother' (before) or
'nbrotber' (after) of the neighboring expression node which has higher prece-

3 dence.

Terminal Nodes

10. STRINGCONST (character strings) : "abc xyzw

exptype - 61 (STRINGCONST)
noofdeac 0
point () - null

point (2) - null
point (3) - null
noofchar - length of str value, not including quotes,

7 in this example
strvalue - character string "abc xyz"

11. NUMBERCONST (numbers): 3.1416

exp.type - 62 (NUMBERCONST)

noofdesc - 0
point(l) - null

point (2) - null
point (3) - null
no of char - length of str value, 6 in this example

atr_value - character string "3.1416"

Prepared Under Con trad No. N6021-90-C-O298 30

Sed by pc mdeiso d Compftev Caimi &Wd CmNI Cwany~; Arai 23. 3"2

3 Elentiar Stalemxt faugar Meme I

3 12.HAHM (names): HKKRIX3

exp-type 63 (NAME)3 no-of desc - 0

point(l) - null
point(2) - null
point(3) - null
no of char - length of str value, 8 in this example
str value - character string OMATRIX_30

I 5.3 TREE CONSTRUCTION EXAMPLES

I Example 1

In the following, an expression, a*b+c/d, is used to illustrate how an expression subtree is
I constructed. A horizontal rectangle represents a non-terminal node; while a vertical rectangle

represents a terminal node. Each small box in the rectangle represents a field in the structure. A
field from which an arrow comes out means a pointer, otherwise, it is an integer or a character3 string with its value indicated. For clarity only the fields involved are indicated.

-ZO

I

3a b cd

In the above diagram, x, y, and z represent the expression types as well as the operators.U They have the following value:

z - PLUS EXPR
i y -f 1)43-..XPR

Z - VAR A=

I
Prepared Under Centuu No. N6091-90-C-4298 31

VseI by p. -missim ofConmat Carmd Wd Cowid Canpefly; Apri 2S. 192

BimeuLsry Sltaenent Languagn MeM 2

Example 2

A function call, f(a*b~c/dx+y), is used to illustrate how such an expression tree is
I constructed.

functi call

I -.

I

X C

N L

Iexpression aft + old]1+

I (details of this expression
is the same as that in Example 1)

In the above diagram. K N, L, K and J represent expresson types as follows:

M = FUNCIONEXPR
N = PROGRAM-NAMEI L COMMA-EXPR
J VARNAME

I

I

a Prepared Under Centsd No. N60921-.o-C-0298 32

I U~~~the by piermissian d Cipmir Canuan Wn Cosvi Canpwry; A~Vi 23. M

S Elm enltr7 Stwaxt l anguages Mem 2

I Example 3

A qualified name a(k).b(ij+l) can be stored as follows:

I qualified nain

IT
* /

I WT I c I1 3

3a kb

, V

U II
IL

3 In the above diagram X< Y< Z, W, V. and U represent expression types as follows:

,, - QUALr 32x13T - 8VB8CCE211R
- VAR N3

U M COgiO X3PR
V - PWS WxPRU-NMBERCOUST

U

Prepared Unlr Coxtd No. N60921-M-C-0298 33 . ,,

%W by peim ion d a w Comnma vW Compwmy; Apri 2. 1"2

U Elementary Statement* LJMVWUago Mews 2

I Example 4

3 VARIABLE-TYPE (alpha-first-typ.J IS (CHARACTER) of ((0. .151)

eO0 *xp_ type-NAME
nbO0
nbrother-null

no of desc-O
point (1) -null
no-of-char-lE

str value-
Wa lpha-f i rt type"

nbO0
nbrother-null.
no of desc-O

point (1-null
no of char-9
str value-

OCHARACTERv

ex2-'4 exp type-DOTSEXPR
nb-OI nbrother-null
no of desc-2
point (1)I point (2)-
point (3)-null
no-of cha r-03 atr value-empty

exp _type-NUMBERCONST exp_ type-NUMBER CONST
nb-0 nb-O
nbrother-null nbrother-null
no-of-de3c-O no-of-desC-O
point (1)-null point (1)-null
no-of-char-i no of cha r-2

str value-00" atr value--15-

Prepared Under Cont e. N60921-9-C.298 34 2.19

IUWbYP -IWlIsmCwpf CawWw ddCnpn.Ar 3

I Eknenu': Steen ulLAnuages Memo 2

I Example 5

3 RECORD TYPE falpha type) IS RECORD M:L 160);

exo---e-exp_.type-NkAME
nb-0
nbrother-null

no-of-desc-O
point (1)-null
no of char-lO

StT Value-
a-lpha-type,

nb'-O
nbrother'mnull

no of desc-.

point (2) -null
point (2)-null

no-of-chark6

str-value-NLENGTH

exp_type-NUMBERCONST
nb-0
nbrother-null
no-of-de3c-0
point (1)-null
no-of-char-3

str value-0l600

I Example 63 VARIABLE (third) : (INTEGER) (OR:0...255) I6p:o'WORDI (qy:0. .7));

1Prepared Under CaNtae No. N6092I-"O-C-O2M 3

1 VieUd by pennissiono dCompour cawmuwd mid Ca Ccntpewy; A~l23.19IM

E~mna7StatenE#A IAIg~gU Nmm 2

10-3 nbrothor-null
no of desc-0
point (i) -null
no of char-S

itt-value-m"third'

x! N xP-yp-NAE xp- yewexptyp.m ecpty-pew

nb-i USAGE EXPR USAGE EXPI USAGE EXPR

nbrother- 4 b nb-i nb-0
no of de3C-O bohr9- P nbrother- a -o nbrother-null

no of deac- no of desc-i no of desc-lUpoint (1) -null 1on~) point(l). pojnt(1):

str value- point (3)-nul point(3)-nu 1 point(3)-nu 1
INTEGERN no-of-char-5 rio-of-char- no-of-char-

3tr- ale-str-vaiue- str value-3AGE PA- LA ZYOUT"

ex yp=exp-type- exp type-
DOSEXRTIMESEXPR DOTS EXPR

nb0nb-0 nb-O

rbrother-null nbrother-nuil nbrother-nuli
no-of-desc-2 no of-desc-2 no of desc-2

pon ()-point(1)- point(1) -Ion() point(2)- point(2)-
point (3) -nu I polnt(3)-n 11 point(3)-nu 1

no of char- Uno of cha 0 no of char-I tr-value- attrvaiu stt value-

3exp type- exptypen -,ip-type- 3tryvalue-
NUMBER CONST NUMBERCONST IFNUMBERCOIIST NUMBER CONST
rib-0umO n- nb-O

nbrother-nuli nbrother-nul nbrothex null nbrother-nullIno of desc-0 noof-deac-0 no of deac-O no of desc-O
point ()-null point (1) -nu point (i)-null point (1) -null
no-of char-i no of char- no of-char-l no of char-i
str value- Ott value- stt Value- stt value-

exp_ Ypowexp_ type-

NUMBER CONST NAME

_b- pnt :) u

obrother-null rbrother-null

att-vlue- tr-vaiue-

Prepared Under Cauirac No. NM03-PU-C-1298 36

Uged by prmuusia. d Conpaev Comawi OW Cauio Conpui; Apg 23. 192

E. Eknary Staemeul LAAguqn M. 2

I Example 7
3VARIABLE Itran) falphatype) JOR;O..4);

oX0- exp type- ex3 exp type-
NAME USAGEEXPR

nb-O nb-OI nbrother-null nbrothe rnu 11
no of deacaFO no of deac-l
point ()-nullpotl-

no of char-4 point (2) -nul
Str vslue- point (3)-null

wtran' no of char-5
3ti-va lie-

"RANGE"

I exi--0 exp-type- exp_type-
MAKE DOTS EXPR

nb-O nb-O
nbrother-null nbrother-null
no of descO0 no of desc-2

point (1)-null point(- *

noo of chaz.10

nbrother-nuL nbote-nul

potn (1 valull point ()nl
no of char-i no-ofchar-1

atvlum tr value-e y

Pr.~bote-nl ,erd nde Cwhwf E0UnC2 3

I Elemeftary Statement LAnlpdu
Mmo

U ~Men' 2

I Example 8

The comma operator "," is used for delimiting the lists of subscripts such as those in A(ij) or

m actual parameters in functions such as ADD(abc). The are stored as follows

SUBSCR.EXP

point (1) point (2)

[iIf-COMM _.XPR

3 poin (1) pint (2

NAME NAMEP Jo

oin t int (2)

FUNCION M..EXPR

point (1) point (2)

point (1) point (2)

NAME]
COMMAEXPR

point (1) i 2)

NAMErNAM.

,, 3,

preprgd Under CealMi Neo N60921~-CX-02953

%W b pL 'ma asim c Con md and Cd Compuy. AWi 23,IW

3 E£Skustry Stmeneut Lagun. Mem.o 3

I Appendix: ESL Statement Code

* A.I. Declaration Statements

STATEMENT STATEMENT STATEMENT
TYPE SUBTYPE TYPE NAME CODE

1. Program Type Block task TASK-TYPE I
generic GENERIC 2

I 2. Structure Type Block record type RECORD-TYPE 11
3. Variable Type Terminal variable type VARIABLE-TYPE 21U 4. Program Unit Block system SYSTEM 31

program file PROGRAM_FILE 32
package PACKSPEC 33
task TASKSPEC 34
procedure PROCSPEC 35
function FCNSPEC 36
program body PACK-BODY 37

TASK-BODY 383 PROC-.BODY 39
FCN-_BODY 40

begin-end BEGIN 41

exception EXCEPTIONDCL 42
EXCEPTIONHNDLR 433 select SELECT 44

5. Structure Block record RECORD 51
6. Variable Terminal variable VARIABLE 61

constant CONSTANT 62
7. File Terminal i/o file 1oFILE 713 i/o device 1ODEVICE 72

task entry TASK-ENTRY 73
8. Comment Terminal ordinary ORDCOMMENT 81

preprocess PREP-COMMENT 82
compiler COMPCOMMENT 83
debugging DEBUG-COMMENT 84

III

Prepared Under Contract No. N60921-90--C-02 39 .

V the "w ' pnm 0im , m r COmPm C mwW am Cz am p Cw ny April 23.1992

I Ekinelary Staelment LaNtags Min 2

I A.2. Executable Statements

3 STATEMENT TYPE STATEMENT SUBTYPE STMT TYPE NAME

1. Condition if-then--else IFSTAT 101

Block case CASESTAT 102

when WHENSTAT 103

U 2. Loop while WHILE.STAT I11

Block until UNTILSTAT 112

for FORSTAT 113

3. Assignment assignment ASSIGN-STAT 121
Terminal

I Procedure Call call CALLSTAT 131

Terminal raise exception RAISESTAT 132
5. Message send/receive message MSG-.CALL 1413 Terminal accept message MSG-ACCEPT 142I6. Input/Output read READ-STAT 151

Terminal write WRITESTAT 152

7. 1/O Auxiliary open OPENFILE 161

Terminal close CLOSEFILE 162

position POSITIONFILE 163

S8. Context with WITHSTAT 171

Terminal use USESTAT 172

program-separate PACK-SEP 173
TASKSEP 174
PROCSEP 1753 FCNSEP 176

separate SEPARATESTAT 177

9. Control Transfer return RETURNSTAT 181
Terminal go-to * GO TO 182

exit* EXIT 183
null* NULL 184

Extension eliminated in later translation.

Prpared Under Contrad No. N 21-9&-C-298 40

nud by PennIbam afi umr Casd AM Cued Canpmr, Apd 23.

